scispace - formally typeset
Search or ask a question
Author

Jonathan Ennis-King

Bio: Jonathan Ennis-King is an academic researcher from Commonwealth Scientific and Industrial Research Organisation. The author has contributed to research in topics: Carbon dioxide & Convective mixing. The author has an hindex of 23, co-authored 72 publications receiving 4083 citations. Previous affiliations of Jonathan Ennis-King include University of Melbourne & Cooperative Research Centre.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a noniterative procedure is presented to calculate the composition of the compressed CO 2 and liquid H 2 O phases at equilibrium, based on equating chemical potentials and using the Redlich-Kwong equation of state to express departure from ideal behavior.

838 citations

Journal ArticleDOI
TL;DR: The experience from CO2 injection at pilot projects (Frio, Ketzin, Nagaoka, US Regional Partnerships) and existing commercial operations (Sleipner, Snohvit, In Salah, acid-gas injection) demonstrates that CO2 geological storage in saline aquifers is technologically feasible.

528 citations

Journal ArticleDOI
TL;DR: This paper summarises the results of a benchmark study that compares a number of mathematical and numerical models applied to specific problems in the context of carbon dioxide (CO2) storage in geologic formations.
Abstract: This paper summarises the results of a benchmark study that compares a number of mathematical and numerical models applied to specific problems in the context of carbon dioxide (CO2) storage in geologic formations. The processes modelled comprise advective multi-phase flow, compositional effects due to dissolution of CO2 into the ambient brine and non-isothermal effects due to temperature gradients and the Joule–Thompson effect. The problems deal with leakage through a leaky well, methane recovery enhanced by CO2 injection and a reservoir-scale injection scenario into a heterogeneous formation. We give a description of the benchmark problems then briefly introduce the participating codes and finally present and discuss the results of the benchmark study.

339 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered the onset of convection in anisotropic porous media subject to a rapid change in boundary conditions and developed new analytical results for sedimentary formations where the average vertical permeability is some fraction of the average horizontal permeability.
Abstract: Previous studies of fluid convection in porous media have considered the onset of convection in isotropic systems and the steady convection in anisotropic systems. This paper bridges between these and develops new results for the onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. These results are relevant to sedimentary formations where the average vertical permeability is some fraction γ of the average horizontal permeability. Linear and global stability analyses are used to define the critical time tc at which the instability occurs as a function of γ and the dimensionless Rayleigh-Darcy number Ra* for both thermal and solute-driven convection in an infinite horizontal slab. Numerical results and approximate analytical solutions are obtained for both a slab of finite thickness and the limit of large slab thickness. For a thick slab, the increase in tc as γ decreases is approximately given by (1+γ)4∕(16γ2). One important application is to the geological storage of carbon dioxide where it is shown that the use of an effective vertical permeability in estimating the critical time is only valid for low permeabilities. The time scale for the onset of convection in geological storage can range from less than a year (for high-permeability formations) to decades or centuries (for low-permeability ones).

255 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, various aspects of CCS are reviewed and discussed including the state of the art technologies for CO2 capture, separation, transport, storage, leakage, monitoring, and life cycle analysis.
Abstract: Global warming and climate change concerns have triggered global efforts to reduce the concentration of atmospheric carbon dioxide (CO2). Carbon dioxide capture and storage (CCS) is considered a crucial strategy for meeting CO2 emission reduction targets. In this paper, various aspects of CCS are reviewed and discussed including the state of the art technologies for CO2 capture, separation, transport, storage, leakage, monitoring, and life cycle analysis. The selection of specific CO2 capture technology heavily depends on the type of CO2 generating plant and fuel used. Among those CO2 separation processes, absorption is the most mature and commonly adopted due to its higher efficiency and lower cost. Pipeline is considered to be the most viable solution for large volume of CO2 transport. Among those geological formations for CO2 storage, enhanced oil recovery is mature and has been practiced for many years but its economical viability for anthropogenic sources needs to be demonstrated. There are growing interests in CO2 storage in saline aquifers due to their enormous potential storage capacity and several projects are in the pipeline for demonstration of its viability. There are multiple hurdles to CCS deployment including the absence of a clear business case for CCS investment and the absence of robust economic incentives to support the additional high capital and operating costs of the whole CCS process.

2,181 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the current state-of-the-art of CO2 capture, transport, utilisation and storage from a multi-scale perspective, moving from the global to molecular scales.
Abstract: Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets, delivering low carbon heat and power, decarbonising industry and, more recently, its ability to facilitate the net removal of CO2 from the atmosphere. However, despite this broad consensus and its technical maturity, CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus, in this paper we review the current state-of-the-art of CO2 capture, transport, utilisation and storage from a multi-scale perspective, moving from the global to molecular scales. In light of the COP21 commitments to limit warming to less than 2 °C, we extend the remit of this study to include the key negative emissions technologies (NETs) of bioenergy with CCS (BECCS), and direct air capture (DAC). Cognisant of the non-technical barriers to deploying CCS, we reflect on recent experience from the UK's CCS commercialisation programme and consider the commercial and political barriers to the large-scale deployment of CCS. In all areas, we focus on identifying and clearly articulating the key research challenges that could usefully be addressed in the coming decade.

2,088 citations

Journal ArticleDOI
TL;DR: Pore-scale imaging and modelling is becoming a routine service in the oil and gas industry as discussed by the authors, and has potential applications in contaminant transport and carbon dioxide storage, which has been shown to transform our understanding of multiphase flow processes.

1,421 citations

Journal ArticleDOI
TL;DR: In this paper, a set of definitions and methodologies for the assessment of CO2 storage capacity in geological media is presented, including coal beds and deep saline aquifers, and the level of detail and resolution required in the data make reliable and accurate estimation of the storage capacity of these media practical only at the local and site-specific scales.

824 citations

BookDOI
01 Oct 2012
TL;DR: The Global Energy Assessment (GEA) as mentioned in this paper brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options.
Abstract: The Global Energy Assessment (GEA) brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options. It has been peer-reviewed anonymously by an additional 200 international experts. The GEA assesses the major global challenges for sustainable development and their linkages to energy; the technologies and resources available for providing energy services; future energy systems that address the major challenges; and the policies and other measures that are needed to realize transformational change toward sustainable energy futures. The GEA goes beyond existing studies on energy issues by presenting a comprehensive and integrated analysis of energy chalenges, opportunities and strategies, for developing, industrialized and emerging economies. This volume is a invaluable resource for energy specialists and technologists in all sectors (academia, industry and government) as well as policymakers, development economists and practitioners in international organizations and national governments.

812 citations