scispace - formally typeset
Search or ask a question
Author

Jonathan G. Huddleston

Other affiliations: University of Florida
Bio: Jonathan G. Huddleston is an academic researcher from University of Alabama. The author has contributed to research in topics: Aqueous solution & Ionic liquid. The author has an hindex of 23, co-authored 42 publications receiving 9095 citations. Previous affiliations of Jonathan G. Huddleston include University of Florida.

Papers
More filters
Journal ArticleDOI
TL;DR: A series of hydrophilic and hydrophobic 1-alkyl-3-methylimidazolium room temperature ionic liquids (RTILs) have been prepared and characterized to determine how water content, density, viscosity, surface tension, melting point, and thermal stability are affected by changes in alkyl chain length and anion.

3,469 citations

Journal ArticleDOI
TL;DR: The partitioning of simple substituted-benzene derivatives between water and the room temperature ionic liquid, butylmethylimidazolium hexafluorophosphate, is based on the solutes' charged state or relative hydrophobicity as discussed by the authors.

2,058 citations

Journal ArticleDOI
TL;DR: Hydrophilic ionic liquids can be salted-out and concentrated from aqueous solution upon addition of kosmotropic salts forming aqueously biphasic systems as illustrated by the phase behavior of mixtures of 1-butyl-3-methylimidazolium chloride and K3PO4.
Abstract: Hydrophilic ionic liquids can be salted-out and concentrated from aqueous solution upon addition of kosmotropic salts forming aqueous biphasic systems as illustrated by the phase behavior of mixtures of 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) and K3PO4.

960 citations

Journal ArticleDOI
TL;DR: Aqueous biphasic reactive extraction (ABRE) can successfully integrate the solvent properties of polyethylene glycol (PEG) and its phase-transfer characteristics into a single efficient system which can additionally be manipulated to facilitate the separation of reactants and/or catalysts from products.

895 citations

Journal ArticleDOI
TL;DR: Experiments have indicated that [bmim]Cl, and several other ILs, as well as dimethylacetamide–LiCl (a well-known solvent system for cellulose), inactivate cellulase under these conditions.

380 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: There are indications that switching from a normal organic solvent to an ionic liquid can lead to novel and unusual chemical reactivity, which opens up a wide field for future investigations into this new class of solvents in catalytic applications.
Abstract: Ionic liquids are salts that are liquid at low temperature (<100 degrees C) which represent a new class of solvents with nonmolecular, ionic character. Even though the first representative has been known since 1914, ionic liquids have only been investigated as solvents for transition metal catalysis in the past ten years. Publications to date show that replacing an organic solvent by an ionic liquid can lead to remarkable improvements in well-known processes. Ionic liquids form biphasic systems with many organic product mixtures. This gives rise to the possibility of a multiphase reaction procedure with easy isolation and recovery of homogeneous catalysts. In addition, ionic liquids have practically no vapor pressure which facilitates product separation by distillation. There are also indications that switching from a normal organic solvent to an ionic liquid can lead to novel and unusual chemical reactivity. This opens up a wide field for future investigations into this new class of solvents in catalytic applications.

5,387 citations

Journal ArticleDOI
TL;DR: There have been parallel and collaborative exchanges between academic research and industrial developments since the materials were first reported in 1914, it is demonstrated.
Abstract: In contrast to a recently expressed, and widely cited, view that “Ionic liquids are starting to leave academic labs and find their way into a wide variety of industrial applications”, we demonstrate in this critical review that there have been parallel and collaborative exchanges between academic research and industrial developments since the materials were first reported in 1914 (148 references)

4,865 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that cellulose can be dissolved without activation or pretreatment in, and regenerated from, 1-butyl-3-methylimidazolium chloride and other hydrophilic ionic liquids.
Abstract: We report here initial results that demonstrate that cellulose can be dissolved without activation or pretreatment in, and regenerated from, 1-butyl-3-methylimidazolium chloride and other hydrophilic ionic liquids. This may enable the application of ionic liquids as alternatives to environmentally undesirable solvents currently used for dissolution of this important bioresource.

4,276 citations

Journal ArticleDOI
TL;DR: The goal in this review is to survey the recent key developments and issues within ionic-liquid research in these areas, and to generate interest in the wider community and encourage others to make use of ionic liquids in tackling scientific challenges.
Abstract: Ionic liquids are room-temperature molten salts, composed mostly of organic ions that may undergo almost unlimited structural variations. This review covers the newest aspects of ionic liquids in applications where their ion conductivity is exploited; as electrochemical solvents for metal/semiconductor electrodeposition, and as batteries and fuel cells where conventional media, organic solvents (in batteries) or water (in polymer-electrolyte-membrane fuel cells), fail. Biology and biomimetic processes in ionic liquids are also discussed. In these decidedly different materials, some enzymes show activity that is not exhibited in more traditional systems, creating huge potential for bioinspired catalysis and biofuel cells. Our goal in this review is to survey the recent key developments and issues within ionic-liquid research in these areas. As well as informing materials scientists, we hope to generate interest in the wider community and encourage others to make use of ionic liquids in tackling scientific challenges.

4,098 citations

Journal ArticleDOI
31 Oct 2003-Science
TL;DR: Rogers and Seddon as discussed by the authors reviewed recent progress on developing new ionic liquid solvents for use in chemical synthesis, catalysis, fuel cells, and other applications.
Abstract: Ionic liquids are composed entirely of ions. Because of the wide range of possible binary and ternary ionic liquids, they offer a potentially wide range of solvent properties. In their Perspective, Rogers and Seddon review recent progress on developing new ionic liquid solvents for use in chemical synthesis, catalysis, fuel cells, and other applications. Ionic liquids are considered advantageous not only because of their versatility but also for their "green" credentials, although it is important to remember that not all ionic liquids are environmentally benign. One industrial process has been reported, and others may not be far behind. The authors conclude that in the next decade, ionic liquids are likely to replace conventional solvents in many applications.

3,687 citations