scispace - formally typeset
Search or ask a question
Author

Jonathan I. Lunine

Bio: Jonathan I. Lunine is an academic researcher from Cornell University. The author has contributed to research in topics: Titan (rocket family) & Planet. The author has an hindex of 99, co-authored 681 publications receiving 39452 citations. Previous affiliations of Jonathan I. Lunine include California Institute of Technology & University of Sydney.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a series of nongray calculations of the atmospheres, spectra, colors, and evolution of extrasolar giant planets (EGPs) and brown dwarfs for effective temperatures below 1300 K.
Abstract: We present the results of a new series of nongray calculations of the atmospheres, spectra, colors, and evolution of extrasolar giant planets (EGPs) and brown dwarfs for effective temperatures below 1300 K This theory encompasses most of the mass/age parameter space occupied by substellar objects and is the first spectral study down to 100 K These calculations are in aid of the multitude of searches being conducted or planned around the world for giant planets and brown dwarfs and reveal the exotic nature of the class Generically, absorption by H2 at longer wavelengths and H2O opacity windows at shorter wavelengths conspire to redistribute flux blueward Below 1200 K, methane is the dominant carbon bearing molecule and is a universal diagnostic feature of EGP and brown dwarf spectra We find that the primary bands in which to search are Z (~105 ?m), J (~12 ?m), H (~16 ?m), K (~22 ?m), M (~5 ?m), and N (~10 ?m), that enhancements of the emergent flux over blackbody values, in particular in the near infrared, can be by many orders of magnitude, and that the infrared colors of EGPs and brown dwarfs are much bluer than previously believed In particular, relative to J and H, the K band flux is reduced by CH4 and H2 absorption Furthermore, we conclude that for Teff's below 1200 K most or all true metals may be sequestered below the photosphere, that an interior radiative zone is a generic feature of substellar objects, and that clouds of H2O and NH3 are formed for Teff's below ~400 and ~200 K, respectively This study is done for solar-metallicity objects in isolation and does not include the effects of stellar insulation Nevertheless, it is a comprehensive attempt to bridge the gap between the planetary and stellar realms and to develop a nongray theory of objects from 03MJ (Saturn) to 70MJ (~007 M?) We find that the detection ranges for brown dwarf/EGP discovery of both ground- and space-based telescopes are larger than previously estimated

1,478 citations

Journal ArticleDOI
TL;DR: The James Webb Space Telescope (JWST) as discussed by the authors is a large (6.6 m), cold (<50 K), infrared-optimized space observatory that will be launched early in the next decade into orbit around the second Earth-Sun Lagrange point.
Abstract: The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched early in the next decade into orbit around the second Earth–Sun Lagrange point. The observatory will have four instruments: a near-IR camera, a near-IR multiobject spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 < ; < 5.0 μ m, while the mid-IR instrument will do both imaging and spectroscopy from 5.0 < ; < 29 μ m. The JWST science goals are divided into four themes. The key objective of The End of the Dark Ages: First Light and Reionization theme is to identify the first luminous sources to form and to determine the ionization history of the early universe. The key objective of The Assembly of Galaxies theme is to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The key objective of The Birth of Stars and Protoplanetary Systems theme is to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The key objective of the Planetary Systems and the Origins of Life theme is to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. Within these themes and objectives, we have derived representative astronomical observations. To enable these observations, JWST consists of a telescope, an instrument package, a spacecraft, and a sunshield. The telescope consists of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The instrument package contains the four science instruments and a fine guidance sensor. The spacecraft provides pointing, orbit maintenance, and communications. The sunshield provides passive thermal control. The JWST operations plan is based on that used for previous space observatories, and the majority of JWST observing time will be allocated to the international astronomical community through annual peer-reviewed proposal opportunities.

1,372 citations

Journal ArticleDOI
TL;DR: In this article, a non-gray spectral analysis of the atmospheres, spectra, colors, and evolution of extrasolar giant planets and brown dwarfs for effective temperatures below 1300 K is presented.
Abstract: We present the results of a new series of non-gray calculations of the atmospheres, spectra, colors, and evolution of extrasolar giant planets (EGPs) and brown dwarfs for effective temperatures below 1300 K. This theory encompasses most of the mass/age parameter space occupied by substellar objects and is the first spectral study down to 100 K. These calculations are in aid of the multitude of searches being conducted or planned around the world for giant planets and brown dwarfs and reveal the exotic nature of the class. Generically, absorption by H_2 at longer wavelengths and H_2O opacity windows at shorter wavelengths conspire to redistribute flux blueward. Below 1200 K, methane is the dominant carbon bearing molecule and is a universal diagnostic feature of EGP and brown dwarf spectra. We find that the primary bands in which to search are $Z$ (\sim 1.05 \mic), $J$ (\sim 1.2 \mic), $H$ (\sim 1.6 \mic), $K$ (\sim 2.2 \mic), $M$ (\sim 5 \mic), and $N$ (\sim 10 \mic), that enhancements of the emergent flux over blackbody values, in particular in the near infrared, can be by many orders of magnitude, and that the infrared colors of EGPs and brown dwarfs are much bluer than previously believed. In particular, relative to $J$ and $H$, the $K$ band flux is reduced by CH_4 and H_2 absorption. Furthermore, we derive that for T_{eff}s below 1200 K most or all true metals are sequestered below the photosphere, that an interior radiative zone is a generic feature of substellar objects, and that clouds of H_2O and NH_3 are formed for T_{eff}s below \sim 400 K and \sim 200 K, respectively. This study is done for solar-metallicity objects in isolation and does not include the effects of stellar insolation. Nevertheless, it is an attempt to bridge the gap between the planetary and stellar realms and to develop a non-gray theory of objects from 0.3 \mj (``saturn'') to 70 \mj ($\sim$0.07 \mo). We find that the detection ranges for brown dwarf/EGP discovery of both ground-- and space-based telescopes are larger than previously estimated.

1,263 citations

Book
01 Jan 1993

1,059 citations

Journal ArticleDOI
08 Dec 2005-Nature
TL;DR: Direct atmospheric measurements from the Gas Chromatograph Mass Spectrometer (GCMS), including altitude profiles of the constituents, isotopic ratios and trace species (including organic compounds), were reported, confirming the primary constituents were confirmed to be nitrogen and methane.
Abstract: Saturn's largest moon, Titan, remains an enigma, explored only by remote sensing from Earth, and by the Voyager and Cassini spacecraft. The most puzzling aspects include the origin of the molecular nitrogen and methane in its atmosphere, and the mechanism(s) by which methane is maintained in the face of rapid destruction by photolysis. The Huygens probe, launched from the Cassini spacecraft, has made the first direct observations of the satellite's surface and lower atmosphere. Here we report direct atmospheric measurements from the Gas Chromatograph Mass Spectrometer (GCMS), including altitude profiles of the constituents, isotopic ratios and trace species (including organic compounds). The primary constituents were confirmed to be nitrogen and methane. Noble gases other than argon were not detected. The argon includes primordial 36Ar, and the radiogenic isotope 40Ar, providing an important constraint on the outgassing history of Titan. Trace organic species, including cyanogen and ethane, were found in surface measurements.

914 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
01 Dec 2010
TL;DR: The Wide-field Infrared Survey Explorer (WISE) is mapping the whole sky following its launch on 14 December 2009 and completed its first full coverage of the sky on July 17 as discussed by the authors.
Abstract: The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite and the 2 Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer is mapping the whole sky following its launch on 14 December 2009. WISE began surveying the sky on 14 Jan 2010 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in November 2010). WISE is achieving 5 sigma point source sensitivities better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12 and 22 micrometers. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6.1", 6.4", 6.5" and 12.0" at 3.4, 4.6, 12 and 22 micrometers, and the astrometric precision for high SNR sources is better than 0.15".

7,182 citations

Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as mentioned in this paper is a suite of open source, robust, efficient, thread-safe libraries for a wide range of applications in computational stellar astrophysics.
Abstract: Stellar physics and evolution calculations enable a broad range of research in astrophysics. Modules for Experiments in Stellar Astrophysics (MESA) is a suite of open source, robust, efficient, thread-safe libraries for a wide range of applications in computational stellar astrophysics. A one-dimensional stellar evolution module, MESAstar, combines many of the numerical and physics modules for simulations of a wide range of stellar evolution scenarios ranging from very low mass to massive stars, including advanced evolutionary phases. MESAstar solves the fully coupled structure and composition equations simultaneously. It uses adaptive mesh refinement and sophisticated timestep controls, and supports shared memory parallelism based on OpenMP. State-of-the-art modules provide equation of state, opacity, nuclear reaction rates, element diffusion data, and atmosphere boundary conditions. Each module is constructed as a separate Fortran 95 library with its own explicitly defined public interface to facilitate independent development. Several detailed examples indicate the extensive verification and testing that is continuously performed and demonstrate the wide range of capabilities that MESA possesses. These examples include evolutionary tracks of very low mass stars, brown dwarfs, and gas giant planets to very old ages; the complete evolutionary track of a 1 M ☉ star from the pre-main sequence (PMS) to a cooling white dwarf; the solar sound speed profile; the evolution of intermediate-mass stars through the He-core burning phase and thermal pulses on the He-shell burning asymptotic giant branch phase; the interior structure of slowly pulsating B Stars and Beta Cepheids; the complete evolutionary tracks of massive stars from the PMS to the onset of core collapse; mass transfer from stars undergoing Roche lobe overflow; and the evolution of helium accretion onto a neutron star. MESA can be downloaded from the project Web site (http://mesa.sourceforge.net/).

3,474 citations

Journal ArticleDOI
TL;DR: The first extensive catalog of galactic embedded clusters is compiled, finding that the embedded cluster birthrate exceeds that of visible open clusters by an order of magnitude or more indicating a high infant mortality rate for protocluster systems.
Abstract: ▪ Abstract Stellar clusters are born embedded within giant molecular clouds (GMCs) and during their formation and early evolution are often only visible at infrared wavelengths, being heavily obscured by dust. Over the past 15 years advances in infrared detection capabilities have enabled the first systematic studies of embedded clusters in galactic molecular clouds. In this article we review the current state of empirical knowledge concerning these extremely young protocluster systems. From a survey of the literature we compile the first extensive catalog of galactic embedded clusters. We use the catalog to construct the mass function and estimate the birthrate for embedded clusters within ∼2 kpc of the sun. We find that the embedded cluster birthrate exceeds that of visible open clusters by an order of magnitude or more indicating a high infant mortality rate for protocluster systems. Less than 4–7% of embedded clusters survive emergence from molecular clouds to become bound clusters of Pleiades age. Th...

2,949 citations

Journal ArticleDOI
01 Nov 1996-Icarus
TL;DR: In this article, the authors presented a self-consistent, interactive simulation of the formation of the giant planets, in which for the first time both the gas and planetesimal accretion rates were calculated in a selfconsistent and interactive fashion.

2,931 citations