scispace - formally typeset
Search or ask a question
Author

Jonathan J. Morrison

Bio: Jonathan J. Morrison is an academic researcher from University of Maryland Medical System. The author has contributed to research in topics: Medicine & Genome-wide association study. The author has an hindex of 51, co-authored 210 publications receiving 18181 citations. Previous affiliations of Jonathan J. Morrison include Queen Elizabeth Hospital Birmingham & University Hospitals Birmingham NHS Foundation Trust.


Papers
More filters
Journal ArticleDOI
18 Oct 2007-Nature
TL;DR: The Phase II HapMap is described, which characterizes over 3.1 million human single nucleotide polymorphisms genotyped in 270 individuals from four geographically diverse populations and includes 25–35% of common SNP variation in the populations surveyed, and increased differentiation at non-synonymous, compared to synonymous, SNPs is demonstrated.
Abstract: We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r2 of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r2 of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or efficacy of natural selection between populations.

4,565 citations

Journal ArticleDOI
Douglas F. Easton1, Karen A. Pooley1, Alison M. Dunning1, Paul D.P. Pharoah1, Deborah J. Thompson1, Dennis G. Ballinger, Jeffery P. Struewing2, Jonathan J. Morrison1, Helen I. Field1, Robert Luben1, Nicholas J. Wareham1, Shahana Ahmed1, Catherine S. Healey1, Richard Bowman, Kerstin B. Meyer1, Christopher A. Haiman3, Laurence K. Kolonel, Brian E. Henderson3, Loic Le Marchand, Paul Brennan4, Suleeporn Sangrajrang, Valerie Gaborieau4, Fabrice Odefrey4, Chen-Yang Shen5, Pei-Ei Wu5, Hui-Chun Wang5, Diana Eccles6, D. Gareth Evans7, Julian Peto8, Olivia Fletcher9, Nichola Johnson9, Sheila Seal, Michael R. Stratton10, Nazneen Rahman, Georgia Chenevix-Trench11, Georgia Chenevix-Trench12, Stig E. Bojesen13, Børge G. Nordestgaard13, C K Axelsson13, Montserrat Garcia-Closas2, Louise A. Brinton2, Stephen J. Chanock2, Jolanta Lissowska14, Beata Peplonska15, Heli Nevanlinna16, Rainer Fagerholm16, H Eerola16, Daehee Kang17, Keun-Young Yoo17, Dong-Young Noh17, Sei Hyun Ahn18, David J. Hunter19, Susan E. Hankinson19, David G. Cox19, Per Hall20, Sara Wedrén20, Jianjun Liu21, Yen-Ling Low21, Natalia Bogdanova22, Peter Schu¨rmann22, Do¨rk Do¨rk22, Rob A. E. M. Tollenaar23, Catharina E. Jacobi23, Peter Devilee23, Jan G. M. Klijn24, Alice J. Sigurdson2, Michele M. Doody2, Bruce H. Alexander25, Jinghui Zhang2, Angela Cox26, Ian W. Brock26, Gordon MacPherson26, Malcolm W.R. Reed26, Fergus J. Couch27, Ellen L. Goode27, Janet E. Olson27, Hanne Meijers-Heijboer28, Hanne Meijers-Heijboer24, Ans M.W. van den Ouweland24, André G. Uitterlinden24, Fernando Rivadeneira24, Roger L. Milne29, Gloria Ribas29, Anna González-Neira29, Javier Benitez29, John L. Hopper30, Margaret R. E. McCredie11, Margaret R. E. McCredie31, Margaret R. E. McCredie32, Melissa C. Southey11, Melissa C. Southey30, Graham G. Giles33, Chris Schroen30, Christina Justenhoven34, Christina Justenhoven35, Hiltrud Brauch34, Hiltrud Brauch35, Ute Hamann36, Yon-Dschun Ko, Amanda B. Spurdle12, Jonathan Beesley12, Xiaoqing Chen12, _ kConFab37, Arto Mannermaa37, Veli-Matti Kosma37, Vesa Kataja37, Jaana M. Hartikainen37, Nicholas E. Day1, David Cox, Bruce A.J. Ponder1 
28 Jun 2007-Nature
TL;DR: To identify further susceptibility alleles, a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls was conducted, followed by a third stage in which 30 single nucleotide polymorphisms were tested for confirmation.
Abstract: Breast cancer exhibits familial aggregation, consistent with variation in genetic susceptibility to the disease. Known susceptibility genes account for less than 25% of the familial risk of breast cancer, and the residual genetic variance is likely to be due to variants conferring more moderate risks. To identify further susceptibility alleles, we conducted a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls, followed by a third stage in which 30 single nucleotide polymorphisms (SNPs) were tested for confirmation in 21,860 cases and 22,578 controls from 22 studies. We used 227,876 SNPs that were estimated to correlate with 77% of known common SNPs in Europeans at r2.0.5. SNPs in five novel independent loci exhibited strong and consistent evidence of association with breast cancer (P,1027). Four of these contain plausible causative genes (FGFR2, TNRC9, MAP3K1 and LSP1). At the second stage, 1,792 SNPs were significant at the P,0.05 level compared with an estimated 1,343 that would be expected by chance, indicating that many additional common susceptibility alleles may be identifiable by this approach.

2,288 citations

Journal ArticleDOI
Pardis C. Sabeti1, Pardis C. Sabeti2, Patrick Varilly1, Patrick Varilly2  +255 moreInstitutions (50)
18 Oct 2007-Nature
TL;DR: ‘Long-range haplotype’ methods, which were developed to identify alleles segregating in a population that have undergone recent selection, and new methods that are based on cross-population comparisons to discover alleles that have swept to near-fixation within a population are developed.
Abstract: With the advent of dense maps of human genetic variation, it is now possible to detect positive natural selection across the human genome. Here we report an analysis of over 3 million polymorphisms from the International HapMap Project Phase 2 (HapMap2). We used 'long-range haplotype' methods, which were developed to identify alleles segregating in a population that have undergone recent selection, and we also developed new methods that are based on cross-population comparisons to discover alleles that have swept to near-fixation within a population. The analysis reveals more than 300 strong candidate regions. Focusing on the strongest 22 regions, we develop a heuristic for scrutinizing these regions to identify candidate targets of selection. In a complementary analysis, we identify 26 non-synonymous, coding, single nucleotide polymorphisms showing regional evidence of positive selection. Examination of these candidates highlights three cases in which two genes in a common biological process have apparently undergone positive selection in the same population:LARGE and DMD, both related to infection by the Lassa virus, in West Africa;SLC24A5 and SLC45A2, both involved in skin pigmentation, in Europe; and EDAR and EDA2R, both involved in development of hair follicles, in Asia.

1,778 citations

Journal ArticleDOI
TL;DR: A genome-wide association study using blood DNA samples from 1,854 individuals with clinically detected prostate cancer diagnosed at ≤60 years or with a family history of disease, and 1,894 population-screened controls with a low prostate-specific antigen (PSA) concentration (<0.5 ng/ml) identified seven loci associated with prostate cancer on chromosomes 3, 6, 7, 10, 11, 19 and X.
Abstract: Prostate cancer is the most common cancer affecting males in developed countries. It shows consistent evidence of familial aggregation, but the causes of this aggregation are mostly unknown. To identify common alleles associated with prostate cancer risk, we conducted a genome-wide association study (GWAS) using blood DNA samples from 1,854 individuals with clinically detected prostate cancer diagnosed at

805 citations

Journal ArticleDOI
TL;DR: Previously identified breast cancer susceptibility loci were found to show larger effect sizes in this study of familial breast cancer cases than in previous population-based studies, consistent with polygenic susceptibility to the disease.
Abstract: Breast cancer is the most common cancer in women in developed countries. To identify common breast cancer susceptibility alleles, we conducted a genome-wide association study in which 582,886 SNPs were genotyped in 3,659 cases with a family history of the disease and 4,897 controls. Promising associations were evaluated in a second stage, comprising 12,576 cases and 12,223 controls. We identified five new susceptibility loci, on chromosomes 9, 10 and 11 (P = 4.6 x 10(-7) to P = 3.2 x 10(-15)). We also identified SNPs in the 6q25.1 (rs3757318, P = 2.9 x 10(-6)), 8q24 (rs1562430, P = 5.8 x 10(-7)) and LSP1 (rs909116, P = 7.3 x 10(-7)) regions that showed more significant association with risk than those reported previously. Previously identified breast cancer susceptibility loci were also found to show larger effect sizes in this study of familial breast cancer cases than in previous population-based studies, consistent with polygenic susceptibility to the disease.

703 citations


Cited by
More filters
Journal ArticleDOI
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

12,661 citations

Journal ArticleDOI
08 Oct 2009-Nature
TL;DR: This paper examined potential sources of missing heritability and proposed research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.
Abstract: Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the remaining, 'missing' heritability can be explained. Here we examine potential sources of missing heritability and propose research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.

7,797 citations

Journal ArticleDOI
01 Nov 2012-Nature
TL;DR: It is shown that evolutionary conservation and coding consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites.
Abstract: By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092 individuals from 14 populations, constructed using a combination of low-coverage whole-genome and exome sequencing. By developing methods to integrate information across several algorithms and diverse data sources, we provide a validated haplotype map of 38 million single nucleotide polymorphisms, 1.4 million short insertions and deletions, and more than 14,000 larger deletions. We show that individuals from different populations carry different profiles of rare and common variants, and that low-frequency variants show substantial geographic differentiation, which is further increased by the action of purifying selection. We show that evolutionary conservation and coding consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites. This resource, which captures up to 98% of accessible single nucleotide polymorphisms at a frequency of 1% in related populations, enables analysis of common and low-frequency variants in individuals from diverse, including admixed, populations.

7,710 citations

Journal ArticleDOI
28 Oct 2010-Nature
TL;DR: The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype as mentioned in this paper, and the results of the pilot phase of the project, designed to develop and compare different strategies for genomewide sequencing with high-throughput platforms.
Abstract: The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research.

7,538 citations

Journal ArticleDOI
TL;DR: This work introduces Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner and constitutes a starting point to build pathway-centric models of biology.
Abstract: Gene set enrichment (GSE) analysis is a popular framework for condensing information from gene expression profiles into a pathway or signature summary. The strengths of this approach over single gene analysis include noise and dimension reduction, as well as greater biological interpretability. As molecular profiling experiments move beyond simple case-control studies, robust and flexible GSE methodologies are needed that can model pathway activity within highly heterogeneous data sets. To address this challenge, we introduce Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner. We demonstrate the robustness of GSVA in a comparison with current state of the art sample-wise enrichment methods. Further, we provide examples of its utility in differential pathway activity and survival analysis. Lastly, we show how GSVA works analogously with data from both microarray and RNA-seq experiments. GSVA provides increased power to detect subtle pathway activity changes over a sample population in comparison to corresponding methods. While GSE methods are generally regarded as end points of a bioinformatic analysis, GSVA constitutes a starting point to build pathway-centric models of biology. Moreover, GSVA contributes to the current need of GSE methods for RNA-seq data. GSVA is an open source software package for R which forms part of the Bioconductor project and can be downloaded at http://www.bioconductor.org .

6,125 citations