scispace - formally typeset
Search or ask a question
Author

Jonathan J. Wierer

Bio: Jonathan J. Wierer is an academic researcher from Lehigh University. The author has contributed to research in topics: Light-emitting diode & Quantum well. The author has an hindex of 32, co-authored 106 publications receiving 5366 citations. Previous affiliations of Jonathan J. Wierer include Philips & Sandia National Laboratories.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a photonic-crystal structure for superior optical mode control was proposed for blue light-emitting diodes with a light extraction efficiency of 73% using InGaN-GaN devices.
Abstract: Blue light-emitting diodes with a light extraction efficiency of 73% are reported. The InGaN–GaN devices use a photonic-crystal structure for superior optical mode control; their performance has been characterized experimentally and modelled theoretically.

716 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a flip-chip light-emitting diodes (FCLEDs) with a large emitting area (∼0.70 mm2) and an optimized contacting scheme allowing high current (200-1000 mA, J∼30-143 A/cm2) operation with low forward voltages.
Abstract: Data are presented on high-power AlGaInN flip-chip light-emitting diodes (FCLEDs). The FCLED is “flipped-over” or inverted compared to conventional AlGaInN light-emitting diodes (LEDs), and light is extracted through the transparent sapphire substrate. This avoids light absorption from the semitransparent metal contact in conventional epitaxial-up designs. The power FCLED has a large emitting area (∼0.70 mm2) and an optimized contacting scheme allowing high current (200–1000 mA, J∼30–143 A/cm2) operation with low forward voltages (∼2.8 V at 200 mA), and therefore higher power conversion (“wall-plug”) efficiencies. The improved extraction efficiency of the FCLED provides 1.6 times more light compared to top-emitting power LEDs and ten times more light than conventional small-area (∼0.07 mm2) LEDs. FCLEDs in the blue wavelength regime (∼435 nm peak) exhibit ∼21% external quantum efficiency and ∼20% wall-plug efficiency at 200 mA and with record light output powers of 400 mW at 1.0 A.

556 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared the performance of LEDs and blue laser diode (LD) for future solid-state lighting (SSL) systems and compared their current state-of-the-art input-power-density-dependent power-conversion efficiencies and potential improvements both in their peak powerconversion efficiency and in the input power densities at which those efficiencies peak.
Abstract: Solid-state lighting (SSL) is now the most efficient source of high color quality white light ever created. Nevertheless, the blue InGaN light-emitting diodes (LEDs) that are the light engine of SSL still have significant performance limitations. Foremost among these is the decrease in efficiency at high input current densities widely known as “efficiency droop.” Efficiency droop limits input power densities, contrary to the desire to produce more photons per unit LED chip area and to make SSL more affordable. Pending a solution to efficiency droop, an alternative device could be a blue laser diode (LD). LDs, operated in stimulated emission, can have high efficiencies at much higher input power densities than LEDs can. In this article, LEDs and LDs for future SSL are explored by comparing: their current state-of-the-art input-power-density-dependent power-conversion efficiencies; potential improvements both in their peak power-conversion efficiencies and in the input power densities at which those efficiencies peak; and their economics for practical SSL.

434 citations

Journal ArticleDOI
TL;DR: In this article, a triangular lattice photonic crystal is formed by dry etching into the top GaN layer, and the chosen lattice spacing causes Bragg scattering of guided modes out of the LED, increasing the extraction efficiency.
Abstract: Electrical operation of InGaN/GaN quantum-well heterostructure photonic crystal light-emitting diodes (PXLEDs) is demonstrated. A triangular lattice photonic crystal is formed by dry etching into the top GaN layer. Light absorption from the metal contact is minimized because the top GaN layers are engineered to provide lateral current spreading, allowing carrier recombination proximal to the photonic crystal yet displaced from the metal contact. The chosen lattice spacing for the photonic crystal causes Bragg scattering of guided modes out of the LED, increasing the extraction efficiency. The far-field radiation patterns of the PXLEDs are heavily modified and display increased radiance, up to ∼1.5 times brighter compared to similar LEDs without the photonic crystal.

395 citations

Journal ArticleDOI
TL;DR: In this article, the current status of solid-state lighting relative to its ultimate potential to be "smart" and "ultra-efficient" is reviewed, and the long-term ultimate route to both might well be color-mixed RYGB lasers.
Abstract: Solid-state lighting has made tremendous progress this past decade, with the potential to make much more progress over the coming decade. In this article, the current status of solid-state lighting relative to its ultimate potential to be “smart” and ultra-efficient is reviewed. Smart, ultra-efficient solid-state lighting would enable both very high “effective” efficiencies and potentially large increases in human performance. To achieve ultra-efficiency, phosphors must give way to multi-color semiconductor electroluminescence: some of the technological challenges associated with such electroluminescence at the semiconductor level are reviewed. To achieve smartness, additional characteristics such as control of light flux and spectra in time and space will be important: some of the technological challenges associated with achieving these characteristics at the lamp level are also reviewed. It is important to emphasise that smart and ultra-efficient are not either/or, and few compromises need to be made between them. The ultimate route to ultra-efficiency brings with it the potential for smartness, the ultimate route to smartness brings with it the potential for ultra-efficiency, and the long-term ultimate route to both might well be color-mixed RYGB lasers.

293 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the advantages and disadvantages of several WOLED architectures in terms of efficiency and color quality are discussed, as well as their widespread acceptance as solid-state lighting sources.
Abstract: White organic light-emitting devices (WOLEDs) have advanced over the last twelve years to the extent that these devices are now being considered as efficient solid-state lighting sources. Initially, WOLEDs were targeted towards display applications for use primarily as liquid-crystal display backlights. Now, their power efficiencies have surpassed those of incandescent sources due to improvements in device architectures, synthesis of novel materials, and the incorporation of electrophosphorescent emitters. This review discusses the advantages and disadvantages of several WOLED architectures in terms of efficiency and color quality. Hindrances to their widespread acceptance as solid-state lighting sources are also noted.

1,962 citations

Journal ArticleDOI
TL;DR: In this paper, the status and future outlook of III-V compound semiconductor visible-spectrum light-emitting diodes (LEDs) are presented and light extraction techniques are reviewed.
Abstract: Status and future outlook of III-V compound semiconductor visible-spectrum light-emitting diodes (LEDs) are presented. Light extraction techniques are reviewed and extraction efficiencies are quantified in the 60%+ (AlGaInP) and ~80% (InGaN) regimes for state-of-the-art devices. The phosphor-based white LED concept is reviewed and recent performance discussed, showing that high-power white LEDs now approach the 100-lm/W regime. Devices employing multiple phosphors for "warm" white color temperatures (~3000-4000 K) and high color rendering (CRI>80), which provide properties critical for many illumination applications, are discussed. Recent developments in chip design, packaging, and high current performance lead to very high luminance devices (~50 Mcd/m2 white at 1 A forward current in 1times1 mm2 chip) that are suitable for application to automotive forward lighting. A prognosis for future LED performance levels is considered given further improvements in internal quantum efficiency, which to date lag achievements in light extraction efficiency for InGaN LEDs

1,882 citations

Journal ArticleDOI
TL;DR: In this paper, an n-side-up GaN-based LED with a hexagonal "conelike" surface has been fabricated by using the laser lift-off technique followed by an anisotropic etching process to roughen the surface.
Abstract: Roughened surfaces of light-emitting diodes (LEDs) provide substantial improvement in light extraction efficiency. By using the laser-lift-off technique followed by an anisotropic etching process to roughen the surface, an n-side-up GaN-based LED with a hexagonal “conelike” surface has been fabricated. The enhancement of the LED output power depends on the surface conditions. The output power of an optimally roughened surface LED shows a twofold to threefold increase compared to that of an LED before surface roughening.

1,412 citations

Journal ArticleDOI
TL;DR: In this paper, the efficiency droop in GaInN∕GaN multiple-quantum well (MQW) light-emitting diodes was investigated and it was shown that the droop is not related to MQW efficiency but rather to the recombination of carriers outside the MqW region.
Abstract: The efficiency droop in GaInN∕GaN multiple-quantum well (MQW) light-emitting diodes is investigated. Measurements show that the efficiency droop, occurring under high injection conditions, is unrelated to junction temperature. Furthermore, the photoluminescence output as a function of excitation power shows no droop, indicating that the droop is not related to MQW efficiency but rather to the recombination of carriers outside the MQW region. Simulations show that polarization fields in the MQW and electron blocking layer enable the escape of electrons from the MQW region and thus are the physical origin of the droop. It is shown that through the use of proper quaternary AlGaInN compositions, polarization effects are reduced, thereby minimizing droop and improving efficiency.

1,252 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the current state of high-power LED technology and the challenges that lay ahead for development of a true "solid state lamp" and demonstrate record performance and reliability for high power colored and white LEDs and show results from the worlds first 100-plus lumen white LED lamp.
Abstract: High-power light-emitting diodes (LEDs) have begun to differentiate themselves from their more common cousins the indicator LED. Today these LEDs are designed to generate 10-100 lm per LED with efficiencies that surpass incandescent and halogen bulbs. After a summary of the motivation for the development of the high-power LED and a look at the future markets, we describe the current state of high-power LED technology and the challenges that lay ahead for development of a true "solid state lamp." We demonstrate record performance and reliability for high-power colored and white LEDs and show results from the worlds first 100-plus lumen white LED lamp, the solid state equivalent of Thomas Edison's 20-W incandescent lightbulb approximately one century later.

1,134 citations