scispace - formally typeset
Search or ask a question
Author

Jonathan Ophir

Bio: Jonathan Ophir is an academic researcher from University of Texas at Austin. The author has contributed to research in topics: Elastography & Attenuation. The author has an hindex of 59, co-authored 191 publications receiving 16587 citations. Previous affiliations of Jonathan Ophir include University of Houston & University of Texas System.


Papers
More filters
Journal ArticleDOI
TL;DR: Initial results of several phantom and excised animal tissue experiments are reported which demonstrate the ability of this technique to quantitatively image strain and elastic modulus distributions with good resolution, sensitivity and with diminished speckle.

3,636 citations

Journal ArticleDOI
TL;DR: Elastography has the potential to be useful in the evaluation of areas of shadowing on the sonogram and also may be helpful in the distinction of benign from malignant masses.
Abstract: PURPOSE: To determine the appearance of various breast lesions on elastograms and to explore the potential of elastography in the diagnosis of breast lesions. MATERIALS AND METHODS: A total of 46 breast lesions were examined with elastography. Patients underwent biopsy or aspiration of all lesions, revealing 15 fibroadenomas, 12 carcinomas, six fibrocystic nodules, and 13 other lesions. The elastogram was generated from radio-frequency data collected with use of a 5-MHz linear-array transducer. The elastogram and corresponding sonogram were evaluated by a single observer for lesion visualization, relative brightness, and margin definition and regularity. The sizes of the lesions at each imaging examination and at biopsy were recorded and compared. RESULTS: Softer tissues such as fat appear as bright areas on elastograms. Firm tissues, including parenchyma, cancers, and other masses, appear darker. The cancers were statistically significantly darker than fibroadenomas (P < .005) and substantially larger on...

980 citations

Journal ArticleDOI
01 Mar 1999
TL;DR: The strain filter formalism and its utility in understanding the noise performance of the elastographic process is given, as well as its use for various image improvements.
Abstract: The basic principles of using sonographic techniques for imaging the elastic properties of tissues are described, with particular emphasis on elastography. After some preliminaries that describe some basic tissue stiffness measurements and some contrast transfer limitations of strain images are presented, four types of elastograms are described, which include axial strain, lateral strain, modulus and Poisson's ratio elastograms. The strain filter formalism and its utility in understanding the noise performance of the elastographic process is then given, as well as its use for various image improvements. After discussing some main classes of elastographic artefacts, the paper concludes with recent results of tissue elastography in vitro and in vivo.

837 citations

Journal ArticleDOI
TL;DR: A new weighted interpolation method operating between neighboring RF A-lines for high precision tracking of the lateral displacement is described, which allows a fine correction for the lateral decorrelation that corrupts the axial estimation.
Abstract: A major disadvantage of the current practice of elastography is that only the axial component of the strain is estimated. The lateral and elevational components are basically disregarded, yet they corrupt the axial strain estimation by inducing decorrelation noise. In this paper, we describe a new weighted interpolation method operating between neighboring RF A-lines for high precision tracking of the lateral displacement. Due to this high lateral-tracking precision, quality lateral elastograms are generated that display the lateral component of the strain tensor. These precision lateral-displacement estimates allow a fine correction for the lateral decorrelation that corrupts the axial estimation. Finally, by dividing the lateral elastogram by the axial elastogram, we are able to produce a new image that displays the distribution of Poisson's ratios in the tissue. Results are presented from finite-element simulations and phantoms as well as in vitro and in vivo experiments.

467 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the LSQSE results in an increase of the elastographic sensitivity (smallest strain that could be detected), thereby increasing the strain dynamic range and reducing the strain contrast and spatial resolution.

451 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: Initial results of several phantom and excised animal tissue experiments are reported which demonstrate the ability of this technique to quantitatively image strain and elastic modulus distributions with good resolution, sensitivity and with diminished speckle.

3,636 citations

Journal ArticleDOI
TL;DR: Liver elasticity measurements were reproducible, operator-independent and well correlated and the intra- and interoperator reproducibility of the technique, as well as its ability to quantify liver fibrosis, were evaluated in 106 patients with chronic hepatitis C.
Abstract: Chronic hepatitis is accompanied by progressive deposit of hepatic fibrosis, which may lead to cirrhosis. Evaluation of liver fibrosis is, thus, of great clinical interest and, up to now, has been assessed with liver biopsy. This work aims to evaluate a new noninvasive device to quantify liver fibrosis: the shear elasticity probe or fibroscan. This device is based on one-dimensional (1-D) transient elastography, a technique that uses both ultrasound (US) (5 MHz) and low-frequency (50 Hz) elastic waves, whose propagation velocity is directly related to elasticity. The intra- and interoperator reproducibility of the technique, as well as its ability to quantify liver fibrosis, were evaluated in 106 patients with chronic hepatitis C. Liver elasticity measurements were reproducible (standardized coefficient of variation: 3%), operator-independent and well correlated (partial correlation coefficient = 0.71, p /= F2) and with cirrhosis ( = F4), respectively. The Fibroscan is a noninvasive, painless, rapid and objective method to quantify liver fibrosis.

2,517 citations

Journal ArticleDOI
TL;DR: The first in vivo investigations made on healthy volunteers emphasize the potential clinical applicability of SSI for breast cancer detection and results validating SSI in heterogeneous phantoms are presented.
Abstract: Supersonic shear imaging (SSI) is a new ultrasound-based technique for real-time visualization of soft tissue viscoelastic properties. Using ultrasonic focused beams, it is possible to remotely generate mechanical vibration sources radiating low-frequency, shear waves inside tissues. Relying on this concept, SSI proposes to create such a source and make it move at a supersonic speed. In analogy with the "sonic boom" created by a supersonic aircraft, the resulting shear waves will interfere constructively along a Mach cone, creating two intense plane shear waves. These waves propagate through the medium and are progressively distorted by tissue heterogeneities. An ultrafast scanner prototype is able to both generate this supersonic source and image (5000 frames/s) the propagation of the resulting shear waves. Using inversion algorithms, the shear elasticity of medium can be mapped quantitatively from this propagation movie. The SSI enables tissue elasticity mapping in less than 20 ms, even in strongly viscous medium like breast. Modalities such as shear compounding are implementable by tilting shear waves in different directions and improving the elasticity estimation. Results validating SSI in heterogeneous phantoms are presented. The first in vivo investigations made on healthy volunteers emphasize the potential clinical applicability of SSI for breast cancer detection.

2,300 citations

Journal ArticleDOI
29 Sep 1995-Science
TL;DR: The results indicate that displacement patterns corresponding to cyclic displacements smaller than 200 nanometers can be measured and suggest the feasibility of a medical imaging technique for delineating elasticity and other mechanical properties of tissue.
Abstract: A nuclear magnetic resonance imaging (MRI) method is presented for quantitatively mapping the physical response of a material to harmonic mechanical excitation. The resulting images allow calculation of regional mechanical properties. Measurements of shear modulus obtained with the MRI technique in gel materials correlate with independent measurements of static shear modulus. The results indicate that displacement patterns corresponding to cyclic displacements smaller than 200 nanometers can be measured. The findings suggest the feasibility of a medical imaging technique for delineating elasticity and other mechanical properties of tissue.

2,015 citations