scispace - formally typeset
Search or ask a question
Author

Jonathan P. Rothstein

Bio: Jonathan P. Rothstein is an academic researcher from University of Massachusetts Amherst. The author has contributed to research in topics: Viscoelasticity & Rheology. The author has an hindex of 41, co-authored 122 publications receiving 6746 citations. Previous affiliations of Jonathan P. Rothstein include Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of the use of the combination of surface roughness and hydrophobicity for engineering large slip at the fluid-solid interface is given in this paper, with an eye toward implementing these surfaces in a wide range of applications.
Abstract: This review discusses the use of the combination of surface roughness and hydrophobicity for engineering large slip at the fluid-solid interface. These superhydrophobic surfaces were initially inspired by the unique water-repellent properties of the lotus leaf and can be employed to produce drag reduction in both laminar and turbulent flows, enhance mixing in laminar flows, and amplify diffusion-osmotic flows. We review the current state of experiments, simulations, and theory of flow past superhydrophobic surfaces. In addition, the designs and limitations of these surfaces are discussed, with an eye toward implementing these surfaces in a wide range of applications.

1,013 citations

Journal ArticleDOI
TL;DR: In this paper, a series of experiments are presented which demonstrate significant drag reduction for the laminar flow of water through microchannels using hydrophobic surfaces with well-defined micron-sized surface roughness.
Abstract: A series of experiments is presented which demonstrate significant drag reduction for the laminar flow of water through microchannels using hydrophobic surfaces with well-defined micron-sized surface roughness. These ultrahydrophobic surfaces are fabricated from silicon wafers using photolithography and are designed to incorporate precise patterns of microposts and microridges which are made hydrophobic through a chemical reaction with an organosilane. An experimental flow cell is used to measure the pressure drop as a function of the flow rate for a series of microchannel geometries and ultrahydrophobic surface designs. Pressure drop reductions up to 40% and apparent slip lengths larger than 20 μm are obtained using ultrahydrophobic surfaces. No drag reduction is observed for smooth hydrophobic surfaces. A confocal surface metrology system was used to measure the deflection of an air–water interface that is formed between microposts and supported by surface tension. This shear-free interface reduces the ...

970 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide laminar flowdrag reduction, are capable of reducing drag in the turbulent flow regime.
Abstract: In this paper, we demonstrate that periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide laminar flowdrag reduction, are capable of reducing drag in the turbulent flow regime. Superhydrophobic surfaces contain micro- or nanoscale hydrophobic features which can support a shear-free air-water interface between peaks in the surface topology. Particle image velocimetry and pressure drop measurements were used to observe significant slip velocities, shear stress, and pressure drop reductions corresponding to drag reductions approaching 50%. At a given Reynolds number,drag reduction is found to increase with increasing feature size and spacing, as in laminar flows. No observable drag reduction was noted in the laminar regime, consistent with previous experimental results for the channel geometry considered. The onset of drag reduction occurs at a critical Reynolds number where the viscous sublayer thickness approaches the scale of the superhydrophobic microfeatures and performance is seen to increase with further reduction in viscous sublayer height. These results indicate superhydrophobic surfaces may provide a significant drag reducing mechanism for marine vessels.

550 citations

Journal ArticleDOI
TL;DR: In this article, a series of experiments are presented which study the flow kinematics of water past drag-reducing superhydrophobic surfaces, which are fabricated from silicon wafers using photolithography and incorporate precise patterns of micrometer-sized ridges aligned in the flow direction.
Abstract: A series of experiments are presented which study the flow kinematics of water past drag-reducing superhydrophobic surfaces. The ultrahydrophobic surfaces are fabricated from silicon wafers using photolithography and are designed to incorporate precise patterns of micrometer-sized ridges aligned in the flow direction. The ridges are made hydrophobic through a chemical reaction with an organosilane. An experimental flow cell is used to measure the velocity profile and the pressure drop as a function of the flow rate for a series of rectangular cross-section microchannel geometries and ultrahydrophobic surface designs. The velocity profile across the microchannel is determined through microparticle image velocimetry (μ-PIV) measurements capable of resolving the flow down to lengthscales well below the size of the surface features. Through these detailed velocity measurements, it is demonstrated that slip along the shear-free air-water interface supported between the hydrophobic micrometer-sized ridges is th...

491 citations

Journal ArticleDOI
TL;DR: In this article, direct numerical simulations were used to investigate the drag-reducing performance of super-hydrophobic surfaces (SHSs) in turbulent channel flow, and the simulation results suggest that the mean velocity profile near the super hydrophobic wall continues to scale with the wall shear stress but is offset by a slip velocity that increases with increasing micro-feature spacing.
Abstract: Direct numerical simulations (DNSs) are used to investigate the drag-reducing performance of superhydrophobic surfaces (SHSs) in turbulent channel flow. SHSs combine surface roughness with hydrophobicity and can, in some cases, support a shear-free air–water interface. Slip velocities, wall shear stresses and Reynolds stresses are considered for a variety of SHS microfeature geometry configurations at a friction Reynolds number of Reτ ≈ 180. For the largest microfeature spacing studied, an average slip velocity over 75% of the bulk velocity is obtained, and the wall shear stress reduction is found to be nearly 40%. The simulation results suggest that the mean velocity profile near the superhydrophobic wall continues to scale with the wall shear stress but is offset by a slip velocity that increases with increasing microfeature spacing.

203 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena as mentioned in this paper.
Abstract: Microfabricated integrated circuits revolutionized computation by vastly reducing the space, labor, and time required for calculations. Microfluidic systems hold similar promise for the large-scale automation of chemistry and biology, suggesting the possibility of numerous experiments performed rapidly and in parallel, while consuming little reagent. While it is too early to tell whether such a vision will be realized, significant progress has been achieved, and various applications of significant scientific and practical interest have been developed. Here a review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena. Specifically, this review explores the Reynolds number Re, addressing inertial effects; the Peclet number Pe, which concerns convective and diffusive transport; the capillary number Ca expressing the importance of interfacial tension; the Deborah, Weissenberg, and elasticity numbers De, Wi, and El, describing elastic effects due to deformable microstructural elements like polymers; the Grashof and Rayleigh numbers Gr and Ra, describing density-driven flows; and the Knudsen number, describing the importance of noncontinuum molecular effects. Furthermore, the long-range nature of viscous flows and the small device dimensions inherent in microfluidics mean that the influence of boundaries is typically significant. A variety of strategies have been developed to manipulate fluids by exploiting boundary effects; among these are electrokinetic effects, acoustic streaming, and fluid-structure interactions. The goal is to describe the physics behind the rich variety of fluid phenomena occurring on the nanoliter scale using simple scaling arguments, with the hopes of developing an intuitive sense for this occasionally counterintuitive world.

4,044 citations

Journal ArticleDOI
TL;DR: In this article, the roughness of a solid is discussed, and it is shown that both the apparent contact angle and the contact angle hysteresis can be dramatically affected by the presence of roughness.
Abstract: We discuss in this review how the roughness of a solid impacts its wettability. We see in particular that both the apparent contact angle and the contact angle hysteresis can be dramatically affected by the presence of roughness. Owing to the development of refined methods for setting very well-controlled micro- or nanotextures on a solid, these effects are being exploited to induce novel wetting properties, such as spontaneous filmification, superhydrophobicity, superoleophobicity, and interfacial slip, that could not be achieved without roughness.

2,219 citations

Journal ArticleDOI
TL;DR: In this article, a review deals with drop impacts on thin liquid layers and dry surfaces, referred to as splashing, and their propagation is discussed in detail, as well as some additional kindred, albeit nonsplashing, phenomena like drop spreading and deposition, receding (recoil), jetting, fingering, and rebound.
Abstract: The review deals with drop impacts on thin liquid layers and dry surfaces. The impacts resulting in crown formation are referred to as splashing. Crowns and their propagation are discussed in detail, as well as some additional kindred, albeit nonsplashing, phenomena like drop spreading and deposition, receding (recoil), jetting, fingering, and rebound. The review begins with an explanation of various practical motivations feeding the interest in the fascinating phenomena of drop impact, and the above-mentioned topics are then considered in their experimental, theoretical, and computational aspects.

2,077 citations

Journal ArticleDOI
Xi Zhang1, Feng Shi1, Jia Niu1, Yugui Jiang1, Zhiqiang Wang1 
TL;DR: A superhydrophobic surface is a surface with a water contact angle close to or higher than 150° as discussed by the authors, and it is the combination of surface roughness and low-surface-energy modification that leads to super-hydrophobicity.
Abstract: A superhydrophobic surface is a surface with a water contact angle close to or higher than 150°. In this feature article, we review the historical and present research on superhydrophobic surfaces, including the characterization of superhydrophobicity, different ways to fabricate rough surfaces, and low-surface-energy modifications on inorganic and organic rough surfaces. It is the combination of surface roughness and low-surface-energy modification that leads to superhydrophobicity. Notably, research on superhydrophobic surfaces has not only fundamental interest but various possible functional applications in micro- and nano-materials and devices.

1,588 citations