scispace - formally typeset
Search or ask a question
Author

Jonathan P. Saxe

Bio: Jonathan P. Saxe is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Stem cell & Neural stem cell. The author has an hindex of 8, co-authored 12 publications receiving 1045 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This study has identified a redox-mediated regulatory mechanism of NSC function that may have significant implications for brain injury, disease, and repair.

656 citations

Journal ArticleDOI
16 Feb 2009-PLOS ONE
TL;DR: Evidence is provided for a phosphorylation-based mechanism which regulates specific Oct4 homodimer conformations and a mechanism for rapid and reversible alteration of Oct4 transactivation potential in response to extracellular signals is provided.
Abstract: Oct4 is a key component of the molecular circuitry which regulates embryonic stem cell proliferation and differentiation. It is essential for maintenance of undifferentiated, pluripotent cell populations, and accomplishes these tasks by binding DNA in multiple heterodimer and homodimer configurations. Very little is known about how formation of these complexes is regulated, or the mechanisms through which Oct4 proteins respond to complex extracellular stimuli which regulate pluripotency. Here, we provide evidence for a phosphorylation-based mechanism which regulates specific Oct4 homodimer conformations. Point mutations of a putative phosphorylation site can specifically abrogate transcriptional activity of a specific homodimer assembly, with little effect on other configurations. Moreover, we performed bioinformatic predictions to identify a subset of Oct4 target genes which may be regulated by this specific assembly, and show that altering Oct4 protein levels affects transcription of Oct4 target genes which are regulated by this assembly but not others. Finally, we identified several signaling pathways which may mediate this phosphorylation and act in combination to regulate Oct4 transcriptional activity and protein stability. These results provide a mechanism for rapid and reversible alteration of Oct4 transactivation potential in response to extracellular signals.

124 citations

Journal ArticleDOI
TL;DR: A high-throughput small molecule screening approach that enables the identification and characterization of chemical compounds that are effective against GBM stem cells and provides potential candidates and a blueprint for lead compound identification in larger scale screens or screens involving other cancer types is described.
Abstract: Glioblastoma multiforme (GBM) is amongst the most lethal of all cancers. GBM consist of a heterogeneous population of tumor cells amongst which a tumor initiating and treatment-resistant subpopulation, here termed GBM stem cells (GSC), have been identified as primary therapeutic targets. Here, we describe a high-throughput small molecule screening approach that enables the identification and characterization of chemical compounds that are effective against GSC. The paradigm uses a tissue culture model to enrich for GSC derived from human GBM resections and combines a phenotype-based screen with gene target-specific screens for compound identification. We used 31,624 small molecules from seven chemical libraries that we characterized and ranked based on their effect on a panel of GSC-enriched cultures as well as their effect on the expression of a module of genes whose expression negatively correlates with clinical outcome: MELK, ASPM, TOP2A and FOXM1b. Of the 11 compounds meeting criteria for exerting differential effects across cell types used, 4 compounds demonstrated selectivity by inhibiting multiple GSC-enriched cultures compared to non-enriched cultures: Emetine, N-Arachidonoyldopamine (NADA), N-Oleoyldopamine (OLDA), and N-Palmitoyldopamine (PALDA). ChemBridge compounds #5560509 and #5256360 inhibited the expression of the 4 mitotic module genes. OLDA, Emetine, and compounds #5560509 and #5256360 were chosen for more detailed study and inhibited GSC in self-renewal assays in vitro and in a xenograft model in vivo. These studies demonstrate that our screening strategy provides potential candidates as well as a blueprint for lead compound identification in larger scale screens or screens involving other cancer types.

91 citations

Journal ArticleDOI
TL;DR: A novel connection between the phosphatidylinositol (PI) metabolic pathway and the DNA replication and damage checkpoint pathway is discovered from an unbiased chemical genomics screen, pointing to a route to overcoming genome instability, a result of defective DNA damage signaling/repair and a hallmark of cancer.
Abstract: We report a novel connection between the phosphatidylinositol (PI) metabolic pathway and the DNA replication and damage checkpoint pathway discovered from an unbiased chemical genomics screen. Substrates and products of PI kinases are important signaling molecules that affect a wide range of biological processes. The full collection of yeast deletion strains was screened to identify genes that confer altered sensitivity to the natural product wortmannin, a PI kinase inhibitor. These experiments have allowed us to explore metabolomic and proteomic implications of PI synthesis and turnover. This study also uncovers other biological processes affected by wortmannin treatment, including proteasome-mediated degradation and chromatin remodeling. Bioinformatic analyses were used to reveal the relative distances among cellular processes affected by wortmannin and protein–protein interactions in the wortmannin-sensitive proteomic subnetwork. These results illustrate the great utility of using a whole-genome approach in annotating the biological effects of small molecules and have clear implications for pharmacogenomics. Furthermore, our discovery points to a route to overcoming genome instability, a result of defective DNA damage signaling/repair and a hallmark of cancer.

87 citations

Journal ArticleDOI
TL;DR: P-Ser inhibits neural stem cell/progenitor proliferation and self-renewal, enhances neurogenic fate commitment, and improves neuronal survival, and the effects of P-Ser are mediated by the group III metabotropic glutamate receptor 4 (mGluR4).

72 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is argued that redox biology, rather than oxidative stress, underlies physiological and pathological conditions.

4,297 citations

Journal ArticleDOI
TL;DR: The widespread expression of mGluRs makes these receptors particularly attractive drug targets, and recent studies continue to validate the therapeutic utility of m GluR ligands in neurological and psychiatric disorders such as Alzheimer's disease, Parkinson's Disease, anxiety, depression, and schizophrenia.
Abstract: The metabotropic glutamate receptors (mGluRs) are family C G-protein-coupled receptors that participate in the modulation of synaptic transmission and neuronal excitability throughout the central nervous system. The mGluRs bind glutamate within a large extracellular domain and transmit signals through the receptor protein to intracellular signaling partners. A great deal of progress has been made in determining the mechanisms by which mGluRs are activated, proteins with which they interact, and orthosteric and allosteric ligands that can modulate receptor activity. The widespread expression of mGluRs makes these receptors particularly attractive drug targets, and recent studies continue to validate the therapeutic utility of mGluR ligands in neurological and psychiatric disorders such as Alzheimer's disease, Parkinson's disease, anxiety, depression, and schizophrenia.

1,581 citations

Journal ArticleDOI
TL;DR: The sources of ROS within cells and what is known regarding how intracellular oxidant levels are regulated are discussed, with the recent observations that reduction–oxidation (redox)-dependent regulation has a crucial role in an ever-widening range of biological activities.
Abstract: Reactive oxygen species (ROS), which were originally characterized in terms of their harmful effects on cells and invading microorganisms, are increasingly implicated in various cell fate decisions and signal transduction pathways. The mechanism involved in ROS-dependent signalling involves the reversible oxidation and reduction of specific amino acids, with crucial reactive Cys residues being the most frequent target. In this Review, we discuss the sources of ROS within cells and what is known regarding how intracellular oxidant levels are regulated. We further discuss the recent observations that reduction-oxidation (redox)-dependent regulation has a crucial role in an ever-widening range of biological activities - from immune function to stem cell self-renewal, and from tumorigenesis to ageing.

1,515 citations

Journal ArticleDOI
TL;DR: This Perspective provides a focused discussion on what factors lead ROS molecules to become signal and/or stress agents, highlighting how increasing knowledge of the underlying chemistry of ROS can lead to advances in understanding their disparate contributions to biology.
Abstract: Reactive oxygen species (ROS) are a family of molecules that are continuously generated, transformed and consumed in all living organisms as a consequence of aerobic life. The traditional view of these reactive oxygen metabolites is one of oxidative stress and damage that leads to decline of tissue and organ systems in aging and disease. However, emerging data show that ROS produced in certain situations can also contribute to physiology and increased fitness. This Perspective provides a focused discussion on what factors lead ROS molecules to become signal and/or stress agents, highlighting how increasing knowledge of the underlying chemistry of ROS can lead to advances in understanding their disparate contributions to biology. An important facet of this emerging area at the chemistry-biology interface is the development of new tools to study these small molecules and their reactivity in complex biological systems.

1,390 citations

Journal ArticleDOI
TL;DR: It is proposed that in addition to targeting virulence, new antimicrobial development strategies should be expanded to include targeting bacterial gene functions that are essential for in vivo viability.
Abstract: Clinically significant antibiotic resistance has evolved against virtually every antibiotic deployed. Yet the development of new classes of antibiotics has lagged far behind our growing need for such drugs. Rather than focusing on therapeutics that target in vitro viability, much like conventional antibiotics, an alternative approach is to target functions essential for infection, such as virulence factors required to cause host damage and disease. This approach has several potential advantages including expanding the repertoire of bacterial targets, preserving the host endogenous microbiome, and exerting less selective pressure, which may result in decreased resistance. We review new approaches to targeting virulence, discuss their advantages and disadvantages, and propose that in addition to targeting virulence, new antimicrobial development strategies should be expanded to include targeting bacterial gene functions that are essential for in vivo viability. We highlight both new advances in identifying these functions and prospects for antimicrobial discovery targeting this unexploited area.

1,231 citations