scispace - formally typeset
Search or ask a question
Author

Jonathan R. Polimeni

Bio: Jonathan R. Polimeni is an academic researcher from Harvard University. The author has contributed to research in topics: Iterative reconstruction & Visual cortex. The author has an hindex of 46, co-authored 177 publications receiving 16396 citations. Previous affiliations of Jonathan R. Polimeni include Massachusetts Institute of Technology & Boston University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI data from 1,000 subjects and a clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex.
Abstract: Information processing in the cerebral cortex involves interactions among distributed areas. Anatomical connectivity suggests that certain areas form local hierarchical relations such as within the visual system. Other connectivity patterns, particularly among association areas, suggest the presence of large-scale circuits without clear hierarchical relations. In this study the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI. Data from 1,000 subjects were registered using surface-based alignment. A clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex. The results revealed local networks confined to sensory and motor cortices as well as distributed networks of association regions. Within the sensory and motor cortices, functional connectivity followed topographic representations across adjacent areas. In association cortex, the connectivity patterns often showed abrupt transitions between network boundaries. Focused analyses were performed to better understand properties of network connectivity. A canonical sensory-motor pathway involving primary visual area, putative middle temporal area complex (MT+), lateral intraparietal area, and frontal eye field was analyzed to explore how interactions might arise within and between networks. Results showed that adjacent regions of the MT+ complex demonstrate differential connectivity consistent with a hierarchical pathway that spans networks. The functional connectivity of parietal and prefrontal association cortices was next explored. Distinct connectivity profiles of neighboring regions suggest they participate in distributed networks that, while showing evidence for interactions, are embedded within largely parallel, interdigitated circuits. We conclude by discussing the organization of these large-scale cerebral networks in relation to monkey anatomy and their potential evolutionary expansion in humans to support cognition.

6,284 citations

Journal ArticleDOI
TL;DR: The minimal preprocessing pipelines for structural, functional, and diffusion MRI that were developed by the HCP to accomplish many low level tasks, including spatial artifact/distortion removal, surface generation, cross-modal registration, and alignment to standard space are described.

3,992 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce a method to create interslice image shifts in the phase encoding direction to increase the distance between aliasing pixels, induced using sign-and amplitude-modulated slice-select gradient blips simultaneous with the EPI phase encoding blips.
Abstract: Simultaneous multislice Echo Planar Imaging (EPI) acquisition using parallel imaging can decrease the acquisition time for diffusion imaging and allow full-brain, high-resolution functional MRI (fMRI) acquisitions at a reduced repetition time (TR) However, the unaliasing of simultaneously acquired, closely spaced slices can be difficult, leading to a high g-factor penalty We introduce a method to create interslice image shifts in the phase encoding direction to increase the distance between aliasing pixels The shift between the slices is induced using sign- and amplitude-modulated slice-select gradient blips simultaneous with the EPI phase encoding blips This achieves the desired shifts but avoids an undesired "tilted voxel" blurring artifact associated with previous methods We validate the method in 3× slice-accelerated spin-echo and gradient-echo EPI at 3 T and 7 T using 32-channel radio frequency (RF) coil brain arrays The Monte-Carlo simulated average g-factor penalty of the 3-fold slice-accelerated acquisition with interslice shifts is <1% at 3 T (compared with 32% without slice shift) Combining 3× slice acceleration with 2× inplane acceleration, the g-factor penalty becomes 19% at 3 T and 10% at 7 T (compared with 41% and 23% without slice shift) We demonstrate the potential of the method for accelerating diffusion imaging by comparing the fiber orientation uncertainty, where the 3-fold faster acquisition showed no noticeable degradation

1,183 citations

Journal ArticleDOI
TL;DR: An overview of the imaging procedures of the ABCD study is provided, the basis for their selection and preliminary quality assurance and results that provide evidence for the feasibility and age-appropriateness of procedures and generalizability of findings to the existent literature are provided.

1,114 citations

Journal ArticleDOI
01 Nov 2019-Science
TL;DR: A coherent pattern of oscillating electrophysiological, hemodynamic, and CSF dynamics that appears during non–rapid eye movement sleep is discovered, demonstrating that the sleeping brain exhibits waves of CSF flow on a macroscopic scale, and theseCSF dynamics are interlinked with neural and hemodynamic rhythms.
Abstract: Sleep is essential for both cognition and maintenance of healthy brain function. Slow waves in neural activity contribute to memory consolidation, whereas cerebrospinal fluid (CSF) clears metabolic waste products from the brain. Whether these two processes are related is not known. We used accelerated neuroimaging to measure physiological and neural dynamics in the human brain. We discovered a coherent pattern of oscillating electrophysiological, hemodynamic, and CSF dynamics that appears during non-rapid eye movement sleep. Neural slow waves are followed by hemodynamic oscillations, which in turn are coupled to CSF flow. These results demonstrate that the sleeping brain exhibits waves of CSF flow on a macroscopic scale, and these CSF dynamics are interlinked with neural and hemodynamic rhythms.

478 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: In this paper, the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI data from 1,000 subjects and a clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex.
Abstract: Information processing in the cerebral cortex involves interactions among distributed areas. Anatomical connectivity suggests that certain areas form local hierarchical relations such as within the visual system. Other connectivity patterns, particularly among association areas, suggest the presence of large-scale circuits without clear hierarchical relations. In this study the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI. Data from 1,000 subjects were registered using surface-based alignment. A clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex. The results revealed local networks confined to sensory and motor cortices as well as distributed networks of association regions. Within the sensory and motor cortices, functional connectivity followed topographic representations across adjacent areas. In association cortex, the connectivity patterns often showed abrupt transitions between network boundaries. Focused analyses were performed to better understand properties of network connectivity. A canonical sensory-motor pathway involving primary visual area, putative middle temporal area complex (MT+), lateral intraparietal area, and frontal eye field was analyzed to explore how interactions might arise within and between networks. Results showed that adjacent regions of the MT+ complex demonstrate differential connectivity consistent with a hierarchical pathway that spans networks. The functional connectivity of parietal and prefrontal association cortices was next explored. Distinct connectivity profiles of neighboring regions suggest they participate in distributed networks that, while showing evidence for interactions, are embedded within largely parallel, interdigitated circuits. We conclude by discussing the organization of these large-scale cerebral networks in relation to monkey anatomy and their potential evolutionary expansion in humans to support cognition.

6,284 citations

Journal ArticleDOI
TL;DR: Progress made during the first half of the Human Connectome Project project in refining the methods for data acquisition and analysis provides grounds for optimism that the HCP datasets and associated methods and software will become increasingly valuable resources for characterizing human brain connectivity and function, their relationship to behavior, and their heritability and genetic underpinnings.

4,388 citations

Journal ArticleDOI
17 Nov 2011-Neuron
TL;DR: In this article, the authors studied functional brain organization in healthy adults using resting state functional connectivity MRI and proposed two novel brain wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships.

3,517 citations

Journal ArticleDOI
11 Aug 2016-Nature
TL;DR: Using multi-modal magnetic resonance images from the Human Connectome Project and an objective semi-automated neuroanatomical approach, 180 areas per hemisphere are delineated bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults.
Abstract: Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. We characterized 97 new areas and 83 areas previously reported using post-mortem microscopy or other specialized study-specific approaches. To enable automated delineation and identification of these areas in new HCP subjects and in future studies, we trained a machine-learning classifier to recognize the multi-modal 'fingerprint' of each cortical area. This classifier detected the presence of 96.6% of the cortical areas in new subjects, replicated the group parcellation, and could correctly locate areas in individuals with atypical parcellations. The freely available parcellation and classifier will enable substantially improved neuroanatomical precision for studies of the structural and functional organization of human cerebral cortex and its variation across individuals and in development, aging, and disease.

3,414 citations