scispace - formally typeset
Search or ask a question
Author

Jonathan Saul Caine

Other affiliations: University of Utah
Bio: Jonathan Saul Caine is an academic researcher from United States Geological Survey. The author has contributed to research in topics: Fault (geology) & Geology. The author has an hindex of 14, co-authored 46 publications receiving 2820 citations. Previous affiliations of Jonathan Saul Caine include University of Utah.


Papers
More filters
Journal ArticleDOI
01 Nov 1996-Geology
TL;DR: In this article, the authors developed qualitative and quantitative schemes for evaluating fault-related permeability structures by using results of field investigations, laboratory permeability measurements, and numerical models offlow within and near fault zones.
Abstract: Fault zone architecture and related permeability structures form primary controls on fluid flow in upper-crustal, brittle fault zones. We develop qualitative and quantitative schemes for evaluating fault-related permeability structures by using results of field investigations, laboratory permeability measurements, and numerical models offlow within andnearfaultzones.Thequalitativeschemecomparesthepercentageofthetotalfaultzone width composed of fault core materials (e.g., anastomosing slip surfaces, clay-rich gouge, cataclasite,andfaultbreccias)tothepercentageofsubsidiarydamagezonestructures(e.g., kinematically related fracture sets, small faults, and veins). A more quantitative scheme is developed to define a set of indices that characterize fault zone architecture and spatial variability.Thefaultcoreanddamagezonearedistinctstructuralandhydrogeologicunits that reflect the material properties and deformation conditions within a fault zone. Whether a fault zone will act as a conduit, barrier, or combined conduit-barrier system is controlled by the relative percentage of fault core and damage zone structures and the inherent variability in grain scale and fracture permeability. This paper outlines a frameworkforunderstanding,comparing,andcorrelatingthefluidflowpropertiesoffaultzones in various geologic settings.

2,179 citations

Book ChapterDOI
TL;DR: In this article, a series of numerical simulations of fluid flow in a set of three-dimensional discrete fracture network models aids in identifying the primary controlling parameters of fault-related fluid flow, and their interactions, throughout episodic deformation.
Abstract: Fault zones in the upper crust are typically composed of complex fracture networks and discrete zones of comminuted and geochemically altered fault rocks. Determining the patterns and rates of fluid flow in these distinct structural discontinuities is a three-dimensional problem. A series of numerical simulations of fluid flow in a set of three-dimensional discrete fracture network models aids in identifying the primary controlling parameters of fault-related fluid flow, and their interactions, throughout episodic deformation. Four idealized, but geologically realistic, fault zone architectural models are based on fracture data collected along exposures of the Stillwater Fault Zone in Dixie Valley, Nevada and geometric data from a series of normal fault zones in east Greenland. The models are also constrained by an Andersonian model for mechanically compatible fracture networks associated with normal faulting. Fluid flow in individual fault zone components, such as a fault core and damage zone, and full outcrop scale model domains are simulated using a finite element routine. Permeability contrasts between components and permeability anisotropy within components are identified as the major controlling factors in fault-related fluid flow. Additionally, the structural and hydraulic variations in these components are also major controls of flow at the scale of the full model domains. The four models can also be viewed as a set of snapshots in the mechanical evolution of a single fault zone. Changes in the hydraulic parameters within the models mimic the evolution of the permeability structure of each model through a single deformation cycle. The model results demonstrate that small changes in the architecture and hydraulic parameters of individual fault zone components can have very large impacts, up to five orders of magnitude, on the permeability structure of the full model domains. Closure of fracture apertures in each fault zone magnifies the magnitude and orientation of permeability anisotropy in ways that are closely linked to the implicitly modeled deformation. Changes in fault zone architecture can cause major changes in permeability structure that, in turn, significantly impact the magnitude and patterns of fluid flux and solute transport both within and near the fault zone. Inferences derived from the model results are discussed in the context of the mechanical strength of an evolving fault zone, fault zone sealing mechanisms which control the conduit-barrier systematics of a fault zone as a flow system, and how these processes are related to fluid flow in natural fault zones.

193 citations

Journal ArticleDOI
TL;DR: In this paper, the Stillwater seismogenic normal fault in Dixie Valley, Nevada has been historically active and is located in an area of high heat flow and hydrothermal activity, and three primary structural elements are identified in the fault zone: a relatively wide fault core with breccia pods embedded in cataclasites, a damage zone (with arrays of mesoscopic fractures), and protolith.

111 citations

Journal ArticleDOI
TL;DR: In this article, outcrop mapping and fault-rock characterization of the Stillwater normal fault zone in Dixie Valley, Nevada are used to document and interpret ancient hydrothermal fluid flow and its possible relationship to seismic deformation.

108 citations

Journal ArticleDOI
TL;DR: In this paper, an outcrop-based geologic characterization and numerical modeling study of the brittle structures and their controls on the flow system was initiated, which revealed a complex aquifer system in which the upper limits on estimated hydraulic properties suggest limited storage capacity and permeability as compared with many sedimentary-rock and surficialdeposit aquifers.
Abstract: Expansion of the Denver metropolitan area has resulted in substantial residential development in the foothills of the Rocky Mountain Front Range. This type of suburban growth, characteristic of much of the semiarid intermountain west, often relies on groundwater from individual domestic wells and is exemplified in the Turkey Creek watershed. The watershed is underlain by complexly deformed and fractured crystalline bedrock in which groundwater resources are poorly understood, and concerns regarding groundwater mining and degradation have arisen. As part of a pilot project to establish quantitative bounds on the groundwater resource, an outcrop-based geologic characterization and numerical modeling study of the brittle structures and their controls on the flow system was initiated. Existing data suggest that groundwater storage, flow, and contaminant transport are primarily controlled by a heterogeneous array of fracture networks. Inspections of well-permit data and field observations led to a conceptual model in which three dominant lithologic groups underlying sparse surface deposits form the aquifer system—metamorphic rocks, a complex array of granitic intrusive rocks, and major brittle fault zones. Pervasive but variable jointing of each lithologic group forms the “background” permeability structure and is an important component of the bulk storage capacity. This “background” is cut by brittle fault zones of varying structural styles and by pegmatite dikes, both with much higher fracture intensities relative to “background” that likely make them spatially complex conduits. Probabilistic, discrete-fracture-network and finite-element modeling was used to estimate porosity and permeability at the outcrop scale using fracture network data collected in the field. The models were conditioned to limited aquifer test and borehole geophysical data and give insight into the relative hydraulic properties between locations and geologic controls on storage and flow. Results from this study reveal a complex aquifer system in which the upper limits on estimated hydraulic properties suggest limited storage capacity and permeability as compared with many sedimentary-rock and surficial-deposit aquifers.

90 citations


Cited by
More filters
11 Jun 2010
Abstract: The validity of the cubic law for laminar flow of fluids through open fractures consisting of parallel planar plates has been established by others over a wide range of conditions with apertures ranging down to a minimum of 0.2 µm. The law may be given in simplified form by Q/Δh = C(2b)3, where Q is the flow rate, Δh is the difference in hydraulic head, C is a constant that depends on the flow geometry and fluid properties, and 2b is the fracture aperture. The validity of this law for flow in a closed fracture where the surfaces are in contact and the aperture is being decreased under stress has been investigated at room temperature by using homogeneous samples of granite, basalt, and marble. Tension fractures were artificially induced, and the laboratory setup used radial as well as straight flow geometries. Apertures ranged from 250 down to 4µm, which was the minimum size that could be attained under a normal stress of 20 MPa. The cubic law was found to be valid whether the fracture surfaces were held open or were being closed under stress, and the results are not dependent on rock type. Permeability was uniquely defined by fracture aperture and was independent of the stress history used in these investigations. The effects of deviations from the ideal parallel plate concept only cause an apparent reduction in flow and may be incorporated into the cubic law by replacing C by C/ƒ. The factor ƒ varied from 1.04 to 1.65 in these investigations. The model of a fracture that is being closed under normal stress is visualized as being controlled by the strength of the asperities that are in contact. These contact areas are able to withstand significant stresses while maintaining space for fluids to continue to flow as the fracture aperture decreases. The controlling factor is the magnitude of the aperture, and since flow depends on (2b)3, a slight change in aperture evidently can easily dominate any other change in the geometry of the flow field. Thus one does not see any noticeable shift in the correlations of our experimental results in passing from a condition where the fracture surfaces were held open to one where the surfaces were being closed under stress.

1,557 citations

Journal ArticleDOI
TL;DR: Fault zones and fault systems have a key role in the development of the Earth's crust and control the mechanics and fluid flow properties of the crust, and the architecture of sedimentary deposits in basins as discussed by the authors.

1,057 citations

Journal ArticleDOI
TL;DR: In this article, the authors use a geometric classification of damage zones into tip-, wall-, and linking-damage zones, based on their location around faults, which can be sub-divided in terms of fault and fracture patterns within the damage zone.

678 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the permeability structure of a fault zone in granitic rocks by laboratory testing of intact core samples from the unfaulted protolith and the two principal fault zone components; the fault core and damaged zone.

619 citations

Journal ArticleDOI
TL;DR: Deformation bands are the most common strain localization feature found in deformed porous sandstones and sediments, including Quaternary deposits, soft gravity slides and tectonically affected sandstones in hydrocarbon reservoirs and aquifers as discussed by the authors.
Abstract: Deformation bands are the most common strain localization feature found in deformed porous sandstones and sediments, including Quaternary deposits, soft gravity slides and tectonically affected sandstones in hydrocarbon reservoirs and aquifers. They occur as various types of tabular deformation zones where grain reorganization occurs by grain sliding, rotation and/or fracture during overall dilation, shearing, and/or compaction. Deformation bands with a component of shear are most common and typically accommodate shear offsets of millimetres to centimetres. They can occur as single structures or cluster zones, and are the main deformation element of fault damage zones in porous rocks. Factors such as porosity, mineralogy, grain size and shape, lithification, state of stress and burial depth control the type of deformation band formed. Of the different types, phyllosilicate bands and most notably cataclastic deformation bands show the largest reduction in permeability, and thus have the greatest potential to influence fluid flow. Disaggregation bands, where non-cataclastic, granular flow is the dominant mechanism, show little influence on fluid flow unless assisted by chemical compaction or cementation.

589 citations