scispace - formally typeset
Search or ask a question
Author

Jonathan Spencer

Bio: Jonathan Spencer is an academic researcher. The author has contributed to research in topics: Recurrent neural network & Domain knowledge. The author has an hindex of 1, co-authored 1 publications receiving 330 citations.

Papers
More filters
Posted Content
TL;DR: This paper explored the utility of using Recurrent Neural Networks (RNNs) to model student learning and found that using neural networks results in substantial improvements in prediction performance on a range of knowledge tracing datasets.
Abstract: Knowledge tracing---where a machine models the knowledge of a student as they interact with coursework---is a well established problem in computer supported education. Though effectively modeling student knowledge would have high educational impact, the task has many inherent challenges. In this paper we explore the utility of using Recurrent Neural Networks (RNNs) to model student learning. The RNN family of models have important advantages over previous methods in that they do not require the explicit encoding of human domain knowledge, and can capture more complex representations of student knowledge. Using neural networks results in substantial improvements in prediction performance on a range of knowledge tracing datasets. Moreover the learned model can be used for intelligent curriculum design and allows straightforward interpretation and discovery of structure in student tasks. These results suggest a promising new line of research for knowledge tracing and an exemplary application task for RNNs.

330 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide a thorough overview on using a class of advanced machine learning techniques, namely deep learning (DL), to facilitate the analytics and learning in the IoT domain.
Abstract: In the era of the Internet of Things (IoT), an enormous amount of sensing devices collect and/or generate various sensory data over time for a wide range of fields and applications. Based on the nature of the application, these devices will result in big or fast/real-time data streams. Applying analytics over such data streams to discover new information, predict future insights, and make control decisions is a crucial process that makes IoT a worthy paradigm for businesses and a quality-of-life improving technology. In this paper, we provide a thorough overview on using a class of advanced machine learning techniques, namely deep learning (DL), to facilitate the analytics and learning in the IoT domain. We start by articulating IoT data characteristics and identifying two major treatments for IoT data from a machine learning perspective, namely IoT big data analytics and IoT streaming data analytics. We also discuss why DL is a promising approach to achieve the desired analytics in these types of data and applications. The potential of using emerging DL techniques for IoT data analytics are then discussed, and its promises and challenges are introduced. We present a comprehensive background on different DL architectures and algorithms. We also analyze and summarize major reported research attempts that leveraged DL in the IoT domain. The smart IoT devices that have incorporated DL in their intelligence background are also discussed. DL implementation approaches on the fog and cloud centers in support of IoT applications are also surveyed. Finally, we shed light on some challenges and potential directions for future research. At the end of each section, we highlight the lessons learned based on our experiments and review of the recent literature.

903 citations

Proceedings Article
17 Jul 2017
TL;DR: A new approach to the problem of neural network expressivity is proposed, which seeks to characterize how structural properties of a neural network family affect the functions it is able to compute, based on an interrelated set of measures of expressivity unified by the novel notion of trajectory length.
Abstract: We propose a new approach to the problem of neural network expressivity, which seeks to characterize how structural properties of a neural network family affect the functions it is able to compute. Our approach is based on an interrelated set of measures of expressivity, unified by the novel notion of trajectory length, which measures how the output of a network changes as the input sweeps along a one-dimensional path. Our findings can be summarized as follows: (1) The complexity of the computed function grows exponentially with depth. (2) All weights are not equal: trained networks are more sensitive to their lower (initial) layer weights. (3) Regularizing on trajectory length (trajectory regularization) is a simpler alternative to batch normalization, with the same performance.

626 citations

Posted Content
TL;DR: In this article, the authors combine Riemannian geometry with the mean field theory of high dimensional chaos to study the nature of signal propagation in generic, deep neural networks with random weights.
Abstract: We combine Riemannian geometry with the mean field theory of high dimensional chaos to study the nature of signal propagation in generic, deep neural networks with random weights. Our results reveal an order-to-chaos expressivity phase transition, with networks in the chaotic phase computing nonlinear functions whose global curvature grows exponentially with depth but not width. We prove this generic class of deep random functions cannot be efficiently computed by any shallow network, going beyond prior work restricted to the analysis of single functions. Moreover, we formalize and quantitatively demonstrate the long conjectured idea that deep networks can disentangle highly curved manifolds in input space into flat manifolds in hidden space. Our theoretical analysis of the expressive power of deep networks broadly applies to arbitrary nonlinearities, and provides a quantitative underpinning for previously abstract notions about the geometry of deep functions.

408 citations

Posted Content
TL;DR: This work introduces a new model called Dynamic Key-Value Memory Networks (DKVMN) that can exploit the relationships between underlying concepts and directly output a student's mastery level of each concept.
Abstract: Knowledge Tracing (KT) is a task of tracing evolving knowledge state of students with respect to one or more concepts as they engage in a sequence of learning activities. One important purpose of KT is to personalize the practice sequence to help students learn knowledge concepts efficiently. However, existing methods such as Bayesian Knowledge Tracing and Deep Knowledge Tracing either model knowledge state for each predefined concept separately or fail to pinpoint exactly which concepts a student is good at or unfamiliar with. To solve these problems, this work introduces a new model called Dynamic Key-Value Memory Networks (DKVMN) that can exploit the relationships between underlying concepts and directly output a student's mastery level of each concept. Unlike standard memory-augmented neural networks that facilitate a single memory matrix or two static memory matrices, our model has one static matrix called key, which stores the knowledge concepts and the other dynamic matrix called value, which stores and updates the mastery levels of corresponding concepts. Experiments show that our model consistently outperforms the state-of-the-art model in a range of KT datasets. Moreover, the DKVMN model can automatically discover underlying concepts of exercises typically performed by human annotations and depict the changing knowledge state of a student.

235 citations

Proceedings ArticleDOI
01 Aug 2016
TL;DR: This work annotates a large datasets of 16k pairs of arguments over 32 topics and investigates whether the relation “A is more convincing than B” exhibits properties of total ordering; these findings are used as global constraints for cleaning the crowdsourced data.
Abstract: We propose a new task in the field of computational argumentation in which we investigate qualitative properties of Web arguments, namely their convincingness. We cast the problem as relation classification, where a pair of arguments having the same stance to the same prompt is judged. We annotate a large datasets of 16k pairs of arguments over 32 topics and investigate whether the relation "A is more convincing than B" exhibits properties of total ordering; these findings are used as global constraints for cleaning the crowdsourced data. We propose two tasks: (1) predicting which argument from an argument pair is more convincing and (2) ranking all arguments to the topic based on their convincingness. We experiment with feature-rich SVM and bidirectional LSTM and obtain 0.76-0.78 accuracy and 0.35-0.40 Spearman's correlation in a cross-topic evaluation. We release the newly created corpus UKPConvArg1 and the experimental software under open licenses.

208 citations