scispace - formally typeset
Search or ask a question
Author

Jonathan W. Kimball

Bio: Jonathan W. Kimball is an academic researcher from Missouri University of Science and Technology. The author has contributed to research in topics: Converters & Inverter. The author has an hindex of 33, co-authored 145 publications receiving 4281 citations. Previous affiliations of Jonathan W. Kimball include SunPower & University of Illinois at Urbana–Champaign.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a ripple correlation control (RCC) method is proposed for tracking the maximum power point of photovoltaic arrays, which takes advantage of the signal ripple, which is automatically present in power converters.
Abstract: A dynamically rapid method used for tracking the maximum power point of photovoltaic arrays, known as ripple correlation control, is presented and verified against experiment The technique takes advantage of the signal ripple, which is automatically present in power converters The ripple is interpreted as a perturbation from which a gradient ascent optimization can be realized The technique converges asymptotically at maximum speed to the maximum power point without the benefit of any array parameters or measurements The technique has simple circuit implementations

482 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a full-order continuous-time average model using the dc terms and first order terms of transformer current and capacitor voltage as state variables, resulting in a thirdorder model, if capacitor equivalent series resistance (ESR) is not considered, and a sixth-order model if ESR is considered.
Abstract: Full-order continuous-time average modeling and dynamic analysis of bidirectional dc-dc dual active bridge (DAB) converters are studied. The transformer current in DAB converter is purely ac, making continuous-time modeling difficult. The proposed full-order continuous-time average model uses the dc terms and first order terms of transformer current and capacitor voltage as state variables, resulting in a third-order model, if capacitor equivalent series resistance (ESR) is not considered, and a sixth-order model if ESR is considered. A control-to-output-voltage transfer function is derived for DAB converters. Experimental results confirm that the proposed model correctly predicts the small-signal frequency response and an even more accurate prediction can be obtained if capacitor ESR is taken into account.

415 citations

Journal ArticleDOI
TL;DR: This paper analyzes the steady-state operation and the range of zero-voltage switching in an ac–ac dual-active-bridge (DAB) converter for a solid-state transformer and develops a switch commutation scheme for the ac-ac DAB converters.
Abstract: Modern development of semiconductor power-switching devices has promoted the use of power electronic converters as power transformers at the distribution level. This paper presents an ac–ac dual-active-bridge (DAB) converter for a solid-state transformer. The proposed converter topology consists of two active H-bridges and one high-frequency transformer. Four-quadrant switch cells are used to allow bidirectional power flow. Because power is controlled by the phase shift between two bridges, output voltage can be regulated when input voltage changes. This paper analyzes the steady-state operation and the range of zero-voltage switching. It develops a switch commutation scheme for the ac–ac DAB converters. Experimental results from a scaled-down prototype are provided to verify the theoretical analysis.

258 citations

Proceedings ArticleDOI
23 Jun 1996
TL;DR: In this paper, a dynamic process for reaching the maximum power point of a variable power source such as a solar cell is introduced, where information from the natural switching ripple instead of external perturbation is used to support the maximizing process.
Abstract: A dynamic process for reaching the maximum power point of a variable power source such as a solar cell is introduced. The process tracks maximum power nearly cycle-by-cycle during transients. Information from the natural switching ripple instead of external perturbation is used to support the maximizing process. The method is globally stable for DC-DC power converters, provided that a switching action is present. A prototype boost power converter that uses this method for control can follow power transients on time scales of a few milliseconds. This performance can be achieved with a simple analog control structure, which supports power processing with minimum loss.

233 citations

Journal ArticleDOI
TL;DR: In this article, a microgrid system with two inverters working as DERs is proposed, and the controllers for the inverters are designed in the dq reference frame.
Abstract: In the islanded mode operation of a microgrid, a part of the distributed network becomes electrically separated from the main grid, while loads are supported by local sources. Such distributed energy sources (DERs) are typically power electronic based, making the full system complex to study. A method for analyzing such a complicated system is discussed in this paper. A microgrid system with two inverters working as DERs is proposed. The controllers for the inverters are designed in the dq reference frame. Nonlinear equations are derived to reflect the system dynamics. These equations are linearized around steady-state operating points to develop a state-space model of the microgrid. An averaged model is used in the derivation of the mathematical model that results in a simplified system of equations. An eigenvalue analysis is completed using the linearized model to determine the small-signal stability of the system. A simulation of the proposed microgrid system consisting of two inverter based DERs, passive loads, and a distribution line is performed. An experimental testbed is designed to investigate the system's dynamics during load perturbation. Results obtained from the simulation and hardware experiment are compared with those predicted by the mathematical model to verify its accuracy.

172 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The many different techniques for maximum power point tracking of photovoltaic (PV) arrays are discussed in this paper, and at least 19 distinct methods have been introduced in the literature, with many variations on implementation.
Abstract: The many different techniques for maximum power point tracking of photovoltaic (PV) arrays are discussed. The techniques are taken from the literature dating back to the earliest methods. It is shown that at least 19 distinct methods have been introduced in the literature, with many variations on implementation. This paper should serve as a convenient reference for future work in PV power generation.

5,022 citations

Journal ArticleDOI
TL;DR: In this article, the perturb and observe (PO) algorithm is used in photovoltaic (PV) systems to maximize the PV array output power by tracking continuously the maximum power point (MPP) which depends on panels temperature and on irradiance conditions.
Abstract: Maximum power point tracking (MPPT) techniques are used in photovoltaic (PV) systems to maximize the PV array output power by tracking continuously the maximum power point (MPP) which depends on panels temperature and on irradiance conditions. The issue of MPPT has been addressed in different ways in the literature but, especially for low-cost implementations, the perturb and observe (PO moreover, it is well known that the P&O algorithm can be confused during those time intervals characterized by rapidly changing atmospheric conditions. In this paper it is shown that, in order to limit the negative effects associated to the above drawbacks, the P&O MPPT parameters must be customized to the dynamic behavior of the specific converter adopted. A theoretical analysis allowing the optimal choice of such parameters is also carried out. Results of experimental measurements are in agreement with the predictions of theoretical analysis.

2,696 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of the MPPT techniques applied to photovoltaic (PV) power system available until January, 2012 is provided, which is intended to serve as a convenient reference for future MPPT users in PV systems. But, confusion lies while selecting a MPPT as every technique has its own merits and demerits.
Abstract: This paper provides a comprehensive review of the maximum power point tracking (MPPT) techniques applied to photovoltaic (PV) power system available until January, 2012. A good number of publications report on different MPPT techniques for a PV system together with implementation. But, confusion lies while selecting a MPPT as every technique has its own merits and demerits. Hence, a proper review of these techniques is essential. Unfortunately, very few attempts have been made in this regard, excepting two latest reviews on MPPT [Salas, 2006], [Esram and Chapman, 2007]. Since, MPPT is an essential part of a PV system, extensive research has been revealed in recent years in this field and many new techniques have been reported to the list since then. In this paper, a detailed description and then classification of the MPPT techniques have made based on features, such as number of control variables involved, types of control strategies employed, types of circuitry used suitably for PV system and practical/commercial applications. This paper is intended to serve as a convenient reference for future MPPT users in PV systems.

1,584 citations

Journal ArticleDOI
TL;DR: In this paper, the dual-active-bridge (DAB) isolated bidirectional dc-dc converter (IBDC) serves as the core circuit of high frequency-link (HFL) power conversion systems.
Abstract: High-frequency-link (HFL) power conversion systems (PCSs) are attracting more and more attentions in academia and industry for high power density, reduced weight, and low noise without compromising efficiency, cost, and reliability. In HFL PCSs, dual-active-bridge (DAB) isolated bidirectional dc-dc converter (IBDC) serves as the core circuit. This paper gives an overview of DAB-IBDC for HFL PCSs. First, the research necessity and development history are introduced. Second, the research subjects about basic characterization, control strategy, soft-switching solution and variant, as well as hardware design and optimization are reviewed and analyzed. On this basis, several typical application schemes of DAB-IBDC for HPL PCSs are presented in a worldwide scope. Finally, design recommendations and future trends are presented. As the core circuit of HFL PCSs, DAB-IBDC has wide prospects. The large-scale practical application of DAB-IBDC for HFL PCSs is expected with the recent advances in solid-state semiconductors, magnetic and capacitive materials, and microelectronic technologies.

1,306 citations

Journal ArticleDOI
TL;DR: In this paper, the authors comprehensively review and classify various step-up dc-dc converters based on their characteristics and voltage-boosting techniques, and discuss the advantages and disadvantages of these voltage boosting techniques and associated converters.
Abstract: DC–DC converters with voltage boost capability are widely used in a large number of power conversion applications, from fraction-of-volt to tens of thousands of volts at power levels from milliwatts to megawatts. The literature has reported on various voltage-boosting techniques, in which fundamental energy storing elements (inductors and capacitors) and/or transformers in conjunction with switch(es) and diode(s) are utilized in the circuit. These techniques include switched capacitor (charge pump), voltage multiplier, switched inductor/voltage lift, magnetic coupling, and multistage/-level, and each has its own merits and demerits depending on application, in terms of cost, complexity, power density, reliability, and efficiency. To meet the growing demand for such applications, new power converter topologies that use the above voltage-boosting techniques, as well as some active and passive components, are continuously being proposed. The permutations and combinations of the various voltage-boosting techniques with additional components in a circuit allow for numerous new topologies and configurations, which are often confusing and difficult to follow. Therefore, to present a clear picture on the general law and framework of the development of next-generation step-up dc–dc converters, this paper aims to comprehensively review and classify various step-up dc–dc converters based on their characteristics and voltage-boosting techniques. In addition, the advantages and disadvantages of these voltage-boosting techniques and associated converters are discussed in detail. Finally, broad applications of dc–dc converters are presented and summarized with comparative study of different voltage-boosting techniques.

1,230 citations