scispace - formally typeset
Search or ask a question
Author

Jonathon Shlens

Bio: Jonathon Shlens is an academic researcher from Google. The author has contributed to research in topics: Object detection & Retinal ganglion. The author has an hindex of 53, co-authored 116 publications receiving 63492 citations. Previous affiliations of Jonathon Shlens include Salk Institute for Biological Studies.


Papers
More filters
Proceedings ArticleDOI
Irwan Bello1, Barret Zoph1, Quoc V. Le1, Ashish Vaswani1, Jonathon Shlens1 
01 Oct 2019
TL;DR: Li et al. as mentioned in this paper concatenated convolutional feature maps with a set of feature maps produced via a novel relative self-attention mechanism, which attends jointly to both features and spatial locations while preserving translation equivariance.
Abstract: Convolutional networks have enjoyed much success in many computer vision applications. The convolution operation however has a significant weakness in that it only operates on a local neighbourhood, thus missing global information. Self-attention, on the other hand, has emerged as a recent advance to capture long range interactions, but has mostly been applied to sequence modeling and generative modeling tasks. In this paper, we propose to augment convolutional networks with self-attention by concatenating convolutional feature maps with a set of feature maps produced via a novel relative self-attention mechanism. In particular, we extend previous work on relative self-attention over sequences to images and discuss a memory efficient implementation. Unlike Squeeze-and-Excitation, which performs attention over the channels and ignores spatial information, our self-attention mechanism attends jointly to both features and spatial locations while preserving translation equivariance. We find that Attention Augmentation leads to consistent improvements in image classification on ImageNet and object detection on COCO across many different models and scales, including ResNets and a state-of-the art mobile constrained network, while keeping the number of parameters similar. In particular, our method achieves a 1.3% top-1 accuracy improvement on ImageNet classification over a ResNet50 baseline and outperforms other attention mechanisms for images such as Squeeze-and-Excitation. It also achieves an improvement of 1.4 AP in COCO Object Detection on top of a RetinaNet baseline.

597 citations

Posted Content
Irwan Bello1, Barret Zoph1, Ashish Vaswani1, Jonathon Shlens1, Quoc V. Le1 
TL;DR: It is found that Attention Augmentation leads to consistent improvements in image classification on ImageNet and object detection on COCO across many different models and scales, including ResNets and a state-of-the art mobile constrained network, while keeping the number of parameters similar.
Abstract: Convolutional networks have been the paradigm of choice in many computer vision applications. The convolution operation however has a significant weakness in that it only operates on a local neighborhood, thus missing global information. Self-attention, on the other hand, has emerged as a recent advance to capture long range interactions, but has mostly been applied to sequence modeling and generative modeling tasks. In this paper, we consider the use of self-attention for discriminative visual tasks as an alternative to convolutions. We introduce a novel two-dimensional relative self-attention mechanism that proves competitive in replacing convolutions as a stand-alone computational primitive for image classification. We find in control experiments that the best results are obtained when combining both convolutions and self-attention. We therefore propose to augment convolutional operators with this self-attention mechanism by concatenating convolutional feature maps with a set of feature maps produced via self-attention. Extensive experiments show that Attention Augmentation leads to consistent improvements in image classification on ImageNet and object detection on COCO across many different models and scales, including ResNets and a state-of-the art mobile constrained network, while keeping the number of parameters similar. In particular, our method achieves a $1.3\%$ top-1 accuracy improvement on ImageNet classification over a ResNet50 baseline and outperforms other attention mechanisms for images such as Squeeze-and-Excitation. It also achieves an improvement of 1.4 mAP in COCO Object Detection on top of a RetinaNet baseline.

557 citations

Journal ArticleDOI
TL;DR: Large-scale multi-electrode recordings were used to measure electrical activity in nearly complete, regularly spaced mosaics of several hundred ON and OFF parasol retinal ganglion cells in macaque monkey retina, and pairwise and adjacent interactions accurately accounted for the structure and prevalence of multi-neuron firing patterns.
Abstract: Current understanding of many neural circuits is limited by our ability to explore the vast number of potential interactions between different cells. We present a new approach that dramatically reduces the complexity of this problem. Large-scale multi-electrode recordings were used to measure electrical activity in nearly complete, regularly spaced mosaics of several hundred ON and OFF parasol retinal ganglion cells in macaque monkey retina. Parasol cells exhibited substantial pairwise correlations, as has been observed in other species, indicating functional connectivity. However, pairwise measurements alone are insufficient to determine the prevalence of multi-neuron firing patterns, which would be predicted from widely diverging common inputs and have been hypothesized to convey distinct visual messages to the brain. The number of possible multi-neuron firing patterns is far too large to study exhaustively, but this problem may be circumvented if two simple rules of connectivity can be established: (1) multi-cell firing patterns arise from multiple pairwise interactions, and (2) interactions are limited to adjacent cells in the mosaic. Using maximum entropy methods from statistical mechanics, we show that pairwise and adjacent interactions accurately accounted for the structure and prevalence of multi-neuron firing patterns, explaining ∼98% of the departures from statistical independence in parasol cells and ∼99% of the departures that were reproducible in repeated measurements. This approach provides a way to define limits on the complexity of network interactions and thus may be relevant for probing the function of many neural circuits.

529 citations

Proceedings ArticleDOI
Esteban Real1, Jonathon Shlens1, Stefano Mazzocchi1, Xin Pan1, Vincent Vanhoucke1 
01 Jul 2017
TL;DR: A new large-scale data set of video URLs with densely-sampled object bounding box annotations called YouTube-BoundingBoxes (YT-BB), which consists of approximately 380,000 video segments automatically selected to feature objects in natural settings without editing or post-processing.
Abstract: We introduce a new large-scale data set of video URLs with densely-sampled object bounding box annotations called YouTube-BoundingBoxes (YT-BB). The data set consists of approximately 380,000 video segments about 19s long, automatically selected to feature objects in natural settings without editing or post-processing, with a recording quality often akin to that of a hand-held cell phone camera. The objects represent a subset of the COCO [32] label set. All video segments were human-annotated with high-precision classification labels and bounding boxes at 1 frame per second. The use of a cascade of increasingly precise human annotations ensures a label accuracy above 95% for every class and tight bounding boxes. Finally, we train and evaluate well-known deep network architectures and report baseline figures for per-frame classification and localization. We also demonstrate how the temporal contiguity of video can potentially be used to improve such inferences. The data set can be found at https://research.google.com/youtube-bb. We hope the availability of such large curated corpus will spur new advances in video object detection and tracking.

501 citations

Proceedings Article
13 Jun 2019
TL;DR: The results establish that stand-alone self-attention is an important addition to the vision practitioner's toolbox and is especially impactful when used in later layers.
Abstract: Convolutions are a fundamental building block of modern computer vision systems. Recent approaches have argued for going beyond convolutions in order to capture long-range dependencies. These efforts focus on augmenting convolutional models with content-based interactions, such as self-attention and non-local means, to achieve gains on a number of vision tasks. The natural question that arises is whether attention can be a stand-alone primitive for vision models instead of serving as just an augmentation on top of convolutions. In developing and testing a pure self-attention vision model, we verify that self-attention can indeed be an effective stand-alone layer. A simple procedure of replacing all instances of spatial convolutions with a form of self-attention to ResNet-50 produces a fully self-attentional model that outperforms the baseline on ImageNet classification with 12% fewer FLOPS and 29% fewer parameters. On COCO object detection, a fully self-attention model matches the mAP of a baseline RetinaNet while having 39% fewer FLOPS and 34% fewer parameters. Detailed ablation studies demonstrate that self-attention is especially impactful when used in later layers. These results establish that stand-alone self-attention is an important addition to the vision practitioner's toolbox.

498 citations


Cited by
More filters
Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI
TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract: The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

30,811 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: DenseNet as mentioned in this paper proposes to connect each layer to every other layer in a feed-forward fashion, which can alleviate the vanishing gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters.
Abstract: Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections—one between each layer and its subsequent layer—our network has L(L+1)/2 direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less memory and computation to achieve high performance. Code and pre-trained models are available at https://github.com/liuzhuang13/DenseNet.

27,821 citations

Proceedings ArticleDOI
27 Jun 2016
TL;DR: Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background, and outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.
Abstract: We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background. Finally, YOLO learns very general representations of objects. It outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.

27,256 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Abstract: Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also present experiments that provide insight into what the network learns, revealing a rich hierarchy of image features. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.

21,729 citations