scispace - formally typeset
Search or ask a question
Author

Jonelle L. Walsh

Bio: Jonelle L. Walsh is an academic researcher from Texas A&M University. The author has contributed to research in topics: Galaxy & Black hole. The author has an hindex of 37, co-authored 62 publications receiving 5300 citations. Previous affiliations of Jonelle L. Walsh include University of California, Irvine & University of Michigan.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a 64-night spectroscopic monitoring campaign at the Lick Observatory 3m Shane telescope with the aim of measuring the masses of the black holes in 12 nearby (z < 0: 05) Seyfert 1 galaxies with expected masses in the range of 10 6 -10 7, and also the well-studied nearby active galactic nucleus (AGN) NGC 5548.
Abstract: We have recently completed a 64-night spectroscopic monitoring campaign at the Lick Observatory 3-m Shane telescope with the aim of measuring the masses of the black holes in 12 nearby (z < 0: 05) Seyfert 1 galaxies with expected masses in the range � 10 6 -10 7 Mand also the well-studied nearby active galactic nucleus (AGN) NGC 5548. Nine of the objects in the sample (including NGC 5548) showed optical variability of sufficient strength during the monitoring campaign to all ow for a time lag to be measured between the continuum fluctuations and the response to these fluctuation s in the broad Hemission. We present here the light curves for all the objects in this sample and the subseq uent Htime lags for the nine objects where these measurements were possible. The Hlag time is directly related to the size of the broad-line reg ion in AGNs, and by combining the Hlag time with the measured width of the Hemission line in the variable part of the spectrum, we determine the virial mass of the central sup ermassive black hole in these nine AGNs. The absolute calibration of the black hole masses is based on the normalization derived by Onken et al., which brings the masses determined by reverberation mapping into agreement with the local MBH -�? relationship for quiescent galaxies. We also examine the time lag response as a function of velocity across the Hline profile for six of the AGNs. The analysis of four leads to rather ambiguous results with relatively flat time lags as a function of velocity. However, SBS 1116+583A exhibits a symmetric time lag response around the line center reminiscent of simple models for circularly orbiting broad -line region (BLR) clouds, and Arp 151 shows an asymmetric profile that is most easily explained by a simple g ravitational infall model. Further investigation will be necessary to fully understand the constraints place d on physical models of the BLR by the velocity- resolved response in these objects. Subject headings:galaxies: active - galaxies: nuclei - galaxies: Seyfert

451 citations

Journal ArticleDOI
TL;DR: In this article, a 64-night spectroscopic monitoring campaign at the Lick Observatory 3m Shane telescope with the aim of measuring the masses of the black holes in 12 nearby (z < 0.05) Seyfert 1 galaxies with expected masses in the range ~10^6-10^7 M_sun and also the well-studied nearby active galactic nucleus (AGN) NGC 5548.
Abstract: We have recently completed a 64-night spectroscopic monitoring campaign at the Lick Observatory 3-m Shane telescope with the aim of measuring the masses of the black holes in 12 nearby (z < 0.05) Seyfert 1 galaxies with expected masses in the range ~10^6-10^7 M_sun and also the well-studied nearby active galactic nucleus (AGN) NGC 5548. Nine of the objects in the sample (including NGC 5548) showed optical variability of sufficient strength during the monitoring campaign to allow for a time lag to be measured between the continuum fluctuations and the response to these fluctuations in the broad Hbeta emission. We present here the light curves for the objects in this sample and the subsequent Hbeta time lags for the nine objects where these measurements were possible. The Hbeta lag time is directly related to the size of the broad-line region, and by combining the lag time with the measured width of the Hbeta emission line in the variable part of the spectrum, we determine the virial mass of the central supermassive black hole in these nine AGNs. The absolute calibration of the black hole masses is based on the normalization derived by Onken et al. We also examine the time lag response as a function of velocity across the Hbeta line profile for six of the AGNs. The analysis of four leads to ambiguous results with relatively flat time lags as a function of velocity. However, SBS 1116+583A exhibits a symmetric time lag response around the line center reminiscent of simple models for circularly orbiting broad-line region (BLR) clouds, and Arp 151 shows an asymmetric profile that is most easily explained by a simple gravitational infall model. Further investigation will be necessary to fully understand the constraints placed on physical models of the BLR by the velocity-resolved response in these objects.

450 citations

Journal ArticleDOI
TL;DR: In this paper, the authors apply comprehensive gas-dynamical models that include the propagation of emission-line profiles through the telescope and spectrograph optics to new Space Telescope Imaging Spectrograph observations from the Hubble Space Telescope, and find that a small amount of velocity dispersion internal to the gas disk is required to match the observed line widths.
Abstract: The supermassive black hole of M87 is one of the most massive black holes known and has been the subject of several stellar and gas-dynamical mass measurements; however, the most recent revision to the stellar-dynamical black hole mass measurement is a factor of about two larger than the previous gas-dynamical determinations. Here, we apply comprehensive gas-dynamical models that include the propagation of emission-line profiles through the telescope and spectrograph optics to new Space Telescope Imaging Spectrograph observations from the Hubble Space Telescope. Unlike the previous gas-dynamical studies of M87, we map out the complete kinematic structure of the emission-line disk within ~40 pc from the nucleus, and find that a small amount of velocity dispersion internal to the gas disk is required to match the observed line widths. We examine a scenario in which the intrinsic velocity dispersion provides dynamical support to the disk, and determine that the inferred black hole mass increases by only 6%. Incorporating this effect into the error budget, we ultimately measure a mass of (68% confidence). Our gas-dynamical black hole mass continues to differ from the most recent stellar-dynamical mass by a factor of two, underscoring the need for carrying out more cross-checks between the two main black hole mass measurement methods.

337 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the velocity dispersions of a sample of local Seyfert 1 galaxies, for which they have recently determined black hole masses using reverberation mapping, and derived an updated value of the virial coefficient f by finding the value which places the reverberation masses in best agreement with the MBH-σ* relation of quiescent galaxies.
Abstract: To investigate the black hole mass versus stellar velocity dispersion (MBH-σ*) relation of active galaxies, we measured the velocity dispersions of a sample of local Seyfert 1 galaxies, for which we have recently determined black hole masses using reverberation mapping. For most objects, stellar velocity dispersions were measured from high signal-to-noise ratio optical spectra centered on the Ca II triplet region (∼ 8500 A), obtained at the Keck, Palomar, and Lick Observatories. For two objects, in which the Ca II triplet region was contaminated by nuclear emission, the measurement was based on high-quality H-band spectra obtained with the OH-Suppressing Infrared Imaging Spectrograph at the Keck-II telescope. Combining our new measurements with data from the literature, we assemble a sample of 24 active galaxies with stellar velocity dispersions and reverberation-based black hole mass measurements in the range of black hole mass 106 < MBH/M⊙ < 109. We use this sample to obtain reverberation-mapping constraints on the slope and intrinsic scatter of the MBH-σ* relation of active galaxies. Assuming a constant virial coefficient f for the reverberation-mapping black hole masses, we find a slope β = 3.55 ± 0.60 and the intrinsic scatter σint = 0.43 ± 0.08 dex in the relation log(MBH/M⊙) = α + β log(σ*/200kms-1), which are consistent with those found for quiescent galaxies. We derive an updated value of the virial coefficient f by finding the value which places the reverberation masses in best agreement with the MBH-σ* relation of quiescent galaxies; using the quiescent MBH-σ* relation determined by Gultekin etal., we find log f = 0.72 +0.09-0.10 with an intrinsic scatter of 0.44 ± 0.07 dex. No strong correlations between f and parameters connected to the physics of accretion (such as the Eddington ratio or line-shape measurements) are found. The uncertainty of the virial coefficient remains one of the main sources of the uncertainty in black hole mass determinations using reverberation mapping, and therefore also in single-epoch spectroscopic estimates of black hole masses in active galaxies. © 2010 The American Astronomical Society.

321 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the velocity dispersions of a sample of local Seyfert 1 galaxies, for which they have recently determined MBH using reverberation mapping.
Abstract: (Abridged) To investigate the black hole mass (MBH) vs. stellar velocity dispersion relation of active galaxies, we measured the velocity dispersions of a sample of local Seyfert 1 galaxies, for which we have recently determined MBH using reverberation mapping. For most objects, velocity dispersions were measured from high S/N ratio optical spectra centered on the Ca II triplet region (~8500 A), obtained at the Keck, Palomar, and Lick Observatories. For two objects, in which the Ca II triplet region was contaminated by nuclear emission, the measurement was based on high-quality H-band spectra obtained with the OSIRIS at the Keck-II Telescope. Combining our new measurements with data from the literature, we assemble a sample of 24 active galaxies with stellar velocity dispersions and reverberation-based MBH measurements in the range of black hole mass 10^6

279 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics, and it has been shown that BHs and bulges coevolve by regulating each other's growth.
Abstract: Supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics. The Hubble Space Telescope revolutionized BH research by advancing the subject from its proof-of-concept phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH mass and the velocity dispersion σ of the bulge component of the host galaxy. Together with similar correlations with bulge luminosity and mass, this led to the widespread belief that BHs and bulges coevolve by regulating each other's growth. Conclusions based on one set of correlations from in brightest cluster ellipticals to in the smallest galaxies dominated BH work for more than a decade. New results are now replacing this simple story with a richer and more plausible picture in which BHs correlate differently with different galaxy components. A reasonable aim is to use this progress to refine our understanding of BH-galaxy coevolution. BHs with masses of 105−106M...

2,804 citations

Journal ArticleDOI
Kazunori Akiyama, Antxon Alberdi1, Walter Alef2, Keiichi Asada3  +403 moreInstitutions (82)
TL;DR: In this article, the Event Horizon Telescope was used to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87.
Abstract: When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 +/- 3 mu as, which is circular and encompasses a central depression in brightness with a flux ratio greater than or similar to 10: 1. The emission ring is recovered using different calibration and imaging schemes, with its diameter and width remaining stable over four different observations carried out in different days. Overall, the observed image is consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic magnetohydrodynamic simulations of black holes and derive a central mass of M = (6.5 +/- 0.7) x 10(9) M-circle dot. Our radio-wave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme limit and on a mass scale that was so far not accessible.

2,589 citations

Posted Content
TL;DR: Kormendy and Ho as mentioned in this paper proposed a method to estimate the BH masses for galaxies with active nuclei (AGNs) based on the observational criteria that are used to classify classical and pseudo bulges.
Abstract: This is the Supplemental Material to Kormendy and Ho 2013, ARAA, 51, 511 (arXiv:1304.7762). Section S1 summarizes indirect methods that are used to estimate black hole (BH) masses for galaxies with active nuclei (AGNs). Section S2 lists the observational criteria that are used to classify classical and pseudo bulges. The (pseudo)bulge classifications used in the main paper are not based on physical interpretation; rather, they are based on these observational criteria. Section S3 supplements the BH database in Section 5 of the main paper and Section S4 here. It discusses corrections to galaxy and BH parameters, most importantly to 2MASS K-band apparent magnitudes. It presents evidence that corrections are needed because 2MASS misses light at large radii when the images of galaxies subtend large angles on the sky or have shallow outer brightness gradients. Section S4 reproduces essentially verbatim the first part of Section 5 in the main paper, the BH database. It includes the list of BH and host-galaxy properties (Tables 2 and 3). Its most important purpose is to provide all of the notes on individual objects.

1,774 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a compilation of properties of 105,783 quasars in the Sloan Digital Sky Survey Data Release 7 (DR7) quasar catalog, including radio properties, and flags indicating broad absorption line properties.
Abstract: We present a compilation of properties of the 105,783 quasars in the Sloan Digital Sky Survey Data Release 7 (DR7) quasar catalog. In this product, we compile continuum and emission line measurements around the Hα, Hβ, Mg II, and C IV regions, as well as other quantities such as radio properties, and flags indicating broad absorption line quasars, disk emitters, etc. We also compile virial black hole mass estimates based on various calibrations. For the fiducial virial mass estimates we use the Vestergaard & Peterson (VP06) calibrations for Hβ and C IV, and our own calibration for Mg II which matches the VP06 Hβ masses on average. We describe the construction of this catalog and discuss its limitations. The catalog and its future updates will be made publicly available online.

1,486 citations