scispace - formally typeset
Search or ask a question
Author

Jong Ho Chung

Other affiliations: Urbana University
Bio: Jong Ho Chung is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Surface diffusion & Nuclear magnetic resonance spectroscopy. The author has an hindex of 9, co-authored 10 publications receiving 562 citations. Previous affiliations of Jong Ho Chung include Urbana University.

Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that there is a negligible difference in the surface electronic properties of these Pt/CB catalysts due to size variations and therefore, the ORR activities are not affected by the differences in the particle size.
Abstract: Oxygen reduction reaction (ORR) measurements and 195Pt electrochemical nuclear magnetic resonance (EC-NMR) spectroscopy were combined to study a series of carbon-supported platinum nanoparticle electrocatalysts (Pt/CB) with average diameters in the range of roughly 1–5 nm. ORR rate constants and H2O2 yields evaluated from hydrodynamic voltammograms did not show any particle size dependency. The apparent activation energy of 37 kJ mol−1, obtained for the ORR rate constant, was identical to that obtained for bulk platinum electrodes. Pt/CB catalysts on Nafion produced only 0.7–1% of H2O2, confirming that the direct four-electron reduction of O2 to H2O is the predominant reaction. NMR spectral features showed characteristic size dependence, and the line shapes were reproduced by using the layer-deconvolution model. Namely, the variations in the NMR spectra with particle size can be explained as due to the combined effect of the layer-by-layer variation of the s-type and d-type local density of states. However, the surface peak position of 195Pt NMR spectra and the spin–lattice relaxation time of surface platinum atoms showed practically no change with the particle size variation. We conclude that there is a negligible difference in the surface electronic properties of these Pt/CB catalysts due to size variations and therefore, the ORR activities are not affected by the differences in the particle size.

166 citations

Journal ArticleDOI
TL;DR: The results of both 77Se EC-NMR as well as the XPS measurements indicate that Se, a semiconductor in elemental form, becomes metallic when interacting with Ru in catalysts made both by direct Se deposition onto Ru and from Ru3(CO)12.
Abstract: We report the results of an investigation of the interaction between Se and Ru in Ru−Se electrocatalysts showing high activity and methanol tolerance in the oxygen reduction reaction (ORR). The res...

101 citations

Journal ArticleDOI
TL;DR: In this article, the results of electrochemical nuclear magnetic resonance (EC NMR) and electrochemical measurements of CO chemisorbed onto these Pt/Pd catalysts were reported.
Abstract: Spontaneous deposition of Pd onto catalytic grade Pt nanoparticles has been shown to yield Pt/Pd catalysts having enhanced catalytic activity toward formic acid oxidation, when compared to pure Pt- and Pd-black. Here, we report the results of electrochemical nuclear magnetic resonance (EC NMR) and electrochemical measurements of CO chemisorbed onto these Pt/Pd catalysts, to probe the nature of the CO chemisorption bond, as well as the motional behavior of adsorbed CO. The 13C NMR spectra are broad and can be deconvoluted into two peaks, assigned to CO adsorbed on Pt and Pd sites. From the temperature dependence of the spin−lattice relaxation rates, we conclude that CO chemisorbed on Pd undergoes fast diffusion. The activation energy (Ea) obtained from these results for CO on Pd is smaller than that found for CO adsorbed onto Pd nanoparticles supported on alumina. A two-band model analysis of the NMR data shows that the 5σ orbital of CO makes a significant contribution to the chemisorption bond of CO on Pd...

76 citations

Journal ArticleDOI
TL;DR: In this paper, a method of immobilization of catalytic metal/alloy nanoparticles on a gold disk for transfer from an electrochemical cell to UHV (without sample exposure to air) for XPS analyses was reported.

71 citations

Journal ArticleDOI
TL;DR: The first direct measurement of CO diffusion on nanoparticle Pt electrocatalysts at the solid/liquid interface is reported, carried out using 13C nuclear magnetic resonance (NMR) with a spin-labeling pulse sequence, opening up a new approach to the study of surface diffusion of adsorbed molecules on nanoparticles electrode catalysts.
Abstract: We report the first direct measurement of CO diffusion on nanoparticle Pt electrocatalysts at the solid/liquid interface, carried out using 13C nuclear magnetic resonance (NMR) with a spin-labeling pulse sequence. Diffusion parameters were measured in the temperature range of 253-293 K for CO adsorbed on commercial Pt-black under saturation coverage. 2H NMR of the same system indicates that the electrolyte remains in the liquid state at temperatures where the CO diffusion experiments were performed. The CO diffusion parameters follow typical Arrhenius behavior with an activation energy of 6.0 +/- 0.4 kcal/mol and a pre-exponential factor of (1.1 +/- 0.6) x 10-8 cm2/s. Exchange between different CO populations, driven by a chemical potential gradient, is suggested to be the main mechanism for CO diffusion. The presence of the electrolyte medium considerably slows down the diffusion of CO as compared to that seen on surfaces of bulk metals under UHV conditions. This work opens up a new approach to the study of surface diffusion of adsorbed molecules on nanoparticle electrode catalysts, including the possibility of correlating diffusion parameters to catalytic activity in real world applications of broad general interest.

55 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core-shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts and metal-free catalysts.
Abstract: The recent advances in electrocatalysis for oxygen reduction reaction (ORR) for proton exchange membrane fuel cells (PEMFCs) are thoroughly reviewed. This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core–shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts, and metal-free catalysts. The recent development of ORR electrocatalysts with novel structures and compositions is highlighted. The understandings of the correlation between the activity and the shape, size, composition, and synthesis method are summarized. For the carbon-based materials, their performance and stability in fuel cells and comparisons with those of platinum are documented. The research directions as well as perspectives on the further development of more active and less expensive electrocatalysts are provided.

2,964 citations

Journal ArticleDOI
TL;DR: A promising strategy to develop such an understanding is the investigation of the impact of material properties on reaction activity/selectivity and on catalyst stability under the conditions of operation, as well as the application of complementary in situ techniques for the Investigation of catalyst structure and composition.
Abstract: Electrochemistry will play a vital role in creating sustainable energy solutions in the future, particularly for the conversion and storage of electrical into chemical energy in electrolysis cells, and the reverse conversion and utilization of the stored energy in galvanic cells. The common challenge in both processes is the development of-preferably abundant-nanostructured materials that can catalyze the electrochemical reactions of interest with a high rate over a sufficiently long period of time. An overall understanding of the related processes and mechanisms occurring under the operation conditions is a necessity for the rational design of materials that meet these requirements. A promising strategy to develop such an understanding is the investigation of the impact of material properties on reaction activity/selectivity and on catalyst stability under the conditions of operation, as well as the application of complementary in situ techniques for the investigation of catalyst structure and composition.

1,153 citations

Journal ArticleDOI
TL;DR: Density functional theory studies suggest that the enhanced catalytic activity for the core-shell nanoparticle originates from a combination of an increased availability of CO-free Pt surface sites on the Ru@Pt nanoparticles and a hydrogen-mediated low-temperature CO oxidation process that is clearly distinct from the traditional bifunctional CO oxidation mechanism.
Abstract: Most of the world’s hydrogen supply is currently obtained by reforming hydrocarbons. ‘Reformate’ hydrogen contains significant quantities of CO that poison current hydrogen fuel-cell devices. Catalysts are needed to remove CO from hydrogen through selective oxidation. Here, we report first-principles-guided synthesis of a nanoparticle catalyst comprising a Ru core covered with an approximately 1–2-monolayer-thick shell of Pt atoms. The distinct catalytic properties of these well-characterized core–shell nanoparticles were demonstrated for preferential CO oxidation in hydrogen feeds and subsequent hydrogen light-off. For H2 streams containing 1,000 p.p.m. CO, H2 light-off is complete by 30 ∘C, which is significantly better than for traditional PtRu nano-alloys (85 ∘C), monometallic mixtures of nanoparticles (93 ∘C) and pure Pt particles (170 ∘C). Density functional theory studies suggest that the enhanced catalytic activity for the core–shell nanoparticle originates from a combination of an increased availability of CO-free Pt surface sites on the Ru@Pt nanoparticles and a hydrogen-mediated low-temperature CO oxidation process that is clearly distinct from the traditional bifunctional CO oxidation mechanism. To produce hydrogen by reforming hydrocarbons, efficient catalysts capable of removing carbon monoxide are needed. This can now be achieved via a preferential oxidation mechanism using nanoparticle catalysts consisting of a ruthenium core covered with platinum.

1,111 citations

Journal ArticleDOI
TL;DR: The chiral stationary phase for high-performance liquid chromatography showed good chiral recognition ability and the chiral phase showed good Raman recognition ability, which is important for future generations of racemates.
Abstract: Supported Catalysts Weiting Yu,† Marc D. Porosoff,† and Jingguang G. Chen*,†,‡,§ †Catalysis Center for Energy Innovation, Department of Chemical and Bimolecular Engineering, University of Delaware, Newark, Delaware 19716, United States ‡Department of Chemical Engineering, Columbia University, New York, New York 10027, United States Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States

1,039 citations

Journal ArticleDOI
TL;DR: Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity
Abstract: Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity Yan-Jie Wang,†,‡ Nana Zhao,‡ Baizeng Fang,† Hui Li,* Xiaotao T. Bi,*,† and Haijiang Wang* †Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC Canada V6T 1Z3 ‡Vancouver International Clean-Tech Research Institute Inc., 4475 Wayburne Drive, Burnaby, Canada V5G 4X4 Electrochemical Materials, Energy, Mining and Environment, National Research Council Canada, 4250 Wesbrook Mall, Vancouver, BC, Canada V6T 1W5

1,014 citations