scispace - formally typeset
Search or ask a question
Author

Jongbae Hong

Bio: Jongbae Hong is an academic researcher from Seoul National University. The author has an hindex of 1, co-authored 1 publications receiving 344 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors introduce the physics of solitary waves in alignments of elastic beads, such as glass beads or stainless steel beads, and show that any impulse propagates as a new kind of highly interactive solitary wave through such an alignment and that the existence of these waves seems to present a need to re-examine the very definition of equilibrium.

374 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a survey of tunable and active phononic crystals and metamaterials is presented, including bandgap and bandgap engineering, anomalous behaviors of wave propagation, as well as tunable manipulation of waves based on different regulation mechanisms: tunable mechanical reconfiguration and materials with multifield coupling.
Abstract: Phononic crystals (PCs) and metamaterials (MMs) can exhibit abnormal properties, even far beyond those found in nature, through artificial design of the topology or ordered structure of unit cells. This emerging class of materials has diverse application potentials in many fields. Recently, the concept of tunable PCs or MMs has been proposed to manipulate a variety of wave functions on demand. In this review, we survey recent developments in tunable and active PCs and MMs, including bandgap and bandgap engineering, anomalous behaviors of wave propagation, as well as tunable manipulation of waves based on different regulation mechanisms: tunable mechanical reconfiguration and materials with multifield coupling. We conclude by outlining future directions in the emerging field.

259 citations

Journal ArticleDOI
TL;DR: A qualitatively new way of generating high-energy acoustic pulses, which may improve imaging capabilities through increased accuracy and signal-to-noise ratios and may lead to more effective nonintrusive scalpels, for example, for cancer treatment.
Abstract: Acoustic lenses are employed in a variety of applications, from biomedical imaging and surgery to defense systems and damage detection in materials. Focused acoustic signals, for example, enable ultrasonic transducers to image the interior of the human body. Currently however the performance of acoustic devices is limited by their linear operational envelope, which implies relatively inaccurate focusing and low focal power. Here we show a dramatic focusing effect and the generation of compact acoustic pulses (sound bullets) in solid and fluid media, with energies orders of magnitude greater than previously achievable. This focusing is made possible by a tunable, nonlinear acoustic lens, which consists of ordered arrays of granular chains. The amplitude, size, and location of the sound bullets can be controlled by varying the static precompression of the chains. Theory and numerical simulations demonstrate the focusing effect, and photoelasticity experiments corroborate it. Our nonlinear lens permits a qualitatively new way of generating high-energy acoustic pulses, which may improve imaging capabilities through increased accuracy and signal-to-noise ratios and may lead to more effective nonintrusive scalpels, for example, for cancer treatment.

250 citations

Journal ArticleDOI
TL;DR: This work proposes and demonstrates an acoustic switch based on a driven chain of spherical particles with a nonlinear contact force and realizes the OR and AND acoustic logic elements by exploiting the nonlinear dynamical effects of the granular chain.
Abstract: Electrical flow control devices are fundamental components in electrical appliances and computers; similarly, optical switches are essential in a number of communication, computation and quantum information-processing applications. An acoustic counterpart would use an acoustic (mechanical) signal to control the mechanical energy flow through a solid material. Although earlier research has demonstrated acoustic diodes or circulators, no acoustic switches with wide operational frequency ranges and controllability have been realized. Here we propose and demonstrate an acoustic switch based on a driven chain of spherical particles with a nonlinear contact force. We experimentally and numerically verify that this switching mechanism stems from a combination of nonlinearity and bandgap effects. We also realize the OR and AND acoustic logic elements by exploiting the nonlinear dynamical effects of the granular chain. We anticipate these results to enable the creation of novel acoustic devices for the control of mechanical energy flow in high-performance ultrasonic devices.

165 citations

Journal ArticleDOI
TL;DR: In this article, the relevance of the acoustic band gap on the transformation of single and multiple pulses in linear, nonlinear and strongly nonlinear regimes is investigated with numerical calculations and experiments.
Abstract: One-dimensional nonlinear phononic crystals have been assembled from periodic diatomic chains of stainless steel cylinders alternated with Polytetrafluoroethylene spheres. This system allows dramatic changes of behavior (from linear to strongly nonlinear) by application of compressive forces practically without changes of geometry of the system. The relevance of classical acoustic band-gap, characteristic for chain with linear interaction forces and derived from the dispersion relation of the linearized system, on the transformation of single and multiple pulses in linear, nonlinear and strongly nonlinear regimes are investigated with numerical calculations and experiments. The limiting frequencies of the acoustic band-gap for investigated system with given precompression force are within the audible frequency range (20–20,000 Hz) and can be tuned by varying the particle’s material properties, mass and initial compression. In the linear elastic chain the presence of the acoustic band-gap was apparent through fast transformation of incoming pulses within very short distances from the chain entrance. It is interesting that pulses with relatively large amplitude (nonlinear elastic chain) exhibit qualitatively similar behavior indicating relevance of the acoustic band gap also for transformation of nonlinear signals. The effects of an in situ band-gap created by a mean dynamic compression are observed in the strongly nonlinear wave regime.

150 citations

Journal ArticleDOI
TL;DR: A quantitatively accurate extension of the Hertzian model is proposed that encompasses dissipative effects via a discrete Laplacian of the velocities in one-dimensional granular crystals.
Abstract: We provide a quantitative characterization of dissipative effects in one-dimensional granular crystals. We use the propagation of highly nonlinear solitary waves as a diagnostic tool and develop optimization schemes that allow one to compute the relevant exponents and prefactors of the dissipative terms in the equations of motion. We thereby propose a quantitatively accurate extension of the Hertzian model that encompasses dissipative effects via a discrete Laplacian of the velocities. Experiments and computations with steel, brass, and polytetrafluoroethylene reveal a common dissipation exponent with a material-dependent prefactor.

142 citations