scispace - formally typeset
Search or ask a question
Author

Jonghyeon Shin

Bio: Jonghyeon Shin is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Protein biosynthesis & Sigma factor. The author has an hindex of 12, co-authored 17 publications receiving 2037 citations. Previous affiliations of Jonghyeon Shin include Sungkyunkwan University & University of Minnesota.

Papers
More filters
Journal ArticleDOI
01 Apr 2016-Science
TL;DR: Electronic design automation principles from EDA are applied to enable increased circuit complexity and to simplify the incorporation of synthetic gene regulation into genetic engineering projects, and it is demonstrated that engineering principles can be applied to identify and suppress errors that complicate the compositions of larger systems.
Abstract: INTRODUCTION Cells respond to their environment, make decisions, build structures, and coordinate tasks. Underlying these processes are computational operations performed by networks of regulatory proteins that integrate signals and control the timing of gene expression. Harnessing this capability is critical for biotechnology projects that require decision-making, control, sensing, or spatial organization. It has been shown that cells can be programmed using synthetic genetic circuits composed of regulators organized to generate a desired operation. However, the construction of even simple circuits is time-intensive and unreliable. RATIONALE Electronic design automation (EDA) was developed to aid engineers in the design of semiconductor-based electronics. In an effort to accelerate genetic circuit design, we applied principles from EDA to enable increased circuit complexity and to simplify the incorporation of synthetic gene regulation into genetic engineering projects. We used the hardware description language Verilog to enable a user to describe a circuit function. The user also specifies the sensors, actuators, and “user constraints file” (UCF), which defines the organism, gate technology, and valid operating conditions. Cello (www.cellocad.org) uses this information to automatically design a DNA sequence encoding the desired circuit. This is done via a set of algorithms that parse the Verilog text, create the circuit diagram, assign gates, balance constraints to build the DNA, and simulate performance. RESULTS Cello designs circuits by drawing upon a library of Boolean logic gates. Here, the gate technology consists of NOT/NOR logic based on repressors. Gate connection is simplified by defining the input and output signals as RNA polymerase (RNAP) fluxes. We found that the gates need to be insulated from their genetic context to function reliably in the context of different circuits. Each gate is isolated using strong terminators to block RNAP leakage, and input interchangeability is improved using ribozymes and promoter spacers. These parts are varied for each gate to avoid breakage due to recombination. Measuring the load of each gate and incorporating this into the optimization algorithms further reduces evolutionary pressure. Cello was applied to the design of 60 circuits for Escherichia coli , where the circuit function was specified using Verilog code and transformed to a DNA sequence. The DNA sequences were built as specified with no additional tuning, requiring 880,000 base pairs of DNA assembly. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts). Across all circuits, 92% of the 412 output states functioned as predicted. CONCLUSION Our work constitutes a hardware description language for programming living cells. This required the co-development of design algorithms with gates that are sufficiently simple and robust to be connected by automated algorithms. We demonstrate that engineering principles can be applied to identify and suppress errors that complicate the compositions of larger systems. This approach leads to highly repetitive and modular genetics, in stark contrast to the encoding of natural regulatory networks. The use of a hardware-independent language and the creation of additional UCFs will allow a single design to be transformed into DNA for different organisms, genetic endpoints, operating conditions, and gate technologies.

813 citations

Journal ArticleDOI
TL;DR: The construction and the phenomenological characterization of synthetic gene circuits engineered with a cell-free expression toolbox that works with the seven E. coli sigma factors are reported, revealing the importance of the global mRNA turnover rate and of passive competition-induced transcriptional regulation.
Abstract: Cell-free protein synthesis is becoming a powerful technique to construct and to study complex informational processes in vitro. Engineering synthetic gene circuits in a test tube, however, is seriously limited by the transcription repertoire of modern cell-free systems, composed of only a few bacteriophage regulatory elements. Here, we report the construction and the phenomenological characterization of synthetic gene circuits engineered with a cell-free expression toolbox that works with the seven E. coli sigma factors. The E. coli endogenous holoenzyme E70 is used as the primary transcription machinery. Elementary circuit motifs, such as multiple stage cascades, AND gate and negative feedback loops are constructed with the six other sigma factors, two bacteriophage RNA polymerases, and a set of repressors. The circuit dynamics reveal the importance of the global mRNA turnover rate and of passive competition-induced transcriptional regulation. Cell-free reactions can be carried out over long periods of ...

391 citations

Journal ArticleDOI
TL;DR: The preparation and execution of an efficient endogenous E. coli based transcription-translation (TX-TL) cell-free expression system that can produce equivalent amounts of protein as T7-based systems at a 98% cost reduction to similar commercial systems is described.
Abstract: Ideal cell-free expression systems can theoretically emulate an in vivo cellular environment in a controlled in vitro platform. This is useful for expressing proteins and genetic circuits in a controlled manner as well as for providing a prototyping environment for synthetic biology. To achieve the latter goal, cell-free expression systems that preserve endogenous Escherichia coli transcription-translation mechanisms are able to more accurately reflect in vivo cellular dynamics than those based on T7 RNA polymerase transcription. We describe the preparation and execution of an efficient endogenous E. coli based transcription-translation (TX-TL) cell-free expression system that can produce equivalent amounts of protein as T7-based systems at a 98% cost reduction to similar commercial systems. The preparation of buffers and crude cell extract are described, as well as the execution of a three tube TX-TL reaction. The entire protocol takes five days to prepare and yields enough material for up to 3000 single reactions in one preparation. Once prepared, each reaction takes under 8 hr from setup to data collection and analysis. Mechanisms of regulation and transcription exogenous to E. coli, such as lac/tet repressors and T7 RNA polymerase, can be supplemented.6 Endogenous properties, such as mRNA and DNA degradation rates, can also be adjusted. The TX-TL cell-free expression system has been demonstrated for large-scale circuit assembly, exploring biological phenomena, and expression of proteins under both T7- and endogenous promoters. Accompanying mathematical models are available. The resulting system has unique applications in synthetic biology as a prototyping environment, or "TX-TL biomolecular breadboard."

353 citations

Journal ArticleDOI
TL;DR: Although it uses the endogenous E. coli transcription machinery, this cell-free system can produce active proteins in quantities comparable to bacteriophage systems and provides much more possibilities to engineer informational processes in vitro.
Abstract: Escherichia coli cell-free expression systems use bacteriophage RNA polymerases, such as T7, to synthesize large amounts of recombinant proteins. These systems are used for many applications in biotechnology, such as proteomics. Recently, informational processes have been reconstituted in vitro with cell-free systems. These synthetic approaches, however, have been seriously limited by a lack of transcription modularity. The current available cell-free systems have been optimized to work with bacteriophage RNA polymerases, which put significant restrictions to engineer processes related to biological information. The development of efficient cell-free systems with broader transcription capabilities is required to study complex informational processes in vitro. In this work, an efficient cell-free expression system that uses the endogenous E. coli RNA polymerase only and sigma factor 70 for transcription was prepared. Approximately 0.75 mg/ml of Firefly luciferase and enhanced green fluorescent protein were produced in batch mode. A plasmid was optimized with different regulatory parts to increase the expression. In addition, a new eGFP was engineered that is more translatable in cell-free systems than the original eGFP. The protein production was characterized with three different adenosine triphosphate (ATP) regeneration systems: creatine phosphate (CP), phosphoenolpyruvate (PEP), and 3-phosphoglyceric acid (3-PGA). The maximum protein production was obtained with 3-PGA. Preparation of the crude extract was streamlined to a simple routine procedure that takes 12 hours including cell culture. Although it uses the endogenous E. coli transcription machinery, this cell-free system can produce active proteins in quantities comparable to bacteriophage systems. The E. coli transcription provides much more possibilities to engineer informational processes in vitro. Many E. coli promoters/operators specific to sigma factor 70 are available that form a broad library of regulatory parts. In this work, cell-free expression is developed as a toolbox to design and to study synthetic gene circuits in vitro.

223 citations

Journal ArticleDOI
TL;DR: The demonstration that genome-sized viral DNA can be expressed in a test tube, recapitulating the entire chain of information processing including the replication of the DNA instructions, opens new possibilities to program and to study complex biochemical systems in vitro.
Abstract: The synthesis of living entities in the laboratory is a standing challenge that calls for innovative approaches. Using a cell-free transcription-translation system as a molecular programming platform, we show that the bacteriophage T7, encoded by a 40 kbp DNA program composed of about 60 genes, can be entirely synthesized from its genomic DNA in a test tube reaction. More than a billion infectious bacteriophages T7 per milliliter of reaction are produced after a few hours of incubation. The replication of the genomic DNA occurs concurrently with phage gene expression, protein synthesis, and viral assembly. The demonstration that genome-sized viral DNA can be expressed in a test tube, recapitulating the entire chain of information processing including the replication of the DNA instructions, opens new possibilities to program and to study complex biochemical systems in vitro.

140 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review describes new tools that aid the construction of genetic circuits and discusses the failure modes encountered when assembling circuits, quantify their impact on performance, and review mitigation efforts.
Abstract: Cells are able to navigate environments, communicate, and build complex patterns by initiating gene expression in response to specific signals. Engineers need to harness this capability to program cells to perform tasks or build chemicals and materials that match the complexity seen in nature. This review describes new tools that aid the construction of genetic circuits. We show how circuit dynamics can be influenced by the choice of regulators and changed with expression “tuning knobs.” We collate the failure modes encountered when assembling circuits, quantify their impact on performance, and review mitigation efforts. Finally, we discuss the constraints that arise from operating within a living cell. Collectively, better tools, well-characterized parts, and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.

723 citations

01 Apr 2014
TL;DR: Better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.
Abstract: Cells are able to navigate environments, communicate, and build complex patterns by initiating gene expression in response to specific signals. Engineers need to harness this capability to program cells to perform tasks or build chemicals and materials that match the complexity seen in nature. This review describes new tools that aid the construction of genetic circuits. We show how circuit dynamics can be influenced by the choice of regulators and changed with expression “tuning knobs.” We collate the failure modes encountered when assembling circuits, quantify their impact on performance, and review mitigation efforts. Finally, we discuss the constraints that arise from operating within a living cell. Collectively, better tools, well-characterized parts, and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.

641 citations

Journal ArticleDOI
TL;DR: This work compares and contrast liposomes and polymersomes for a better a priori choice and design of vesicles and tries to understand the advantages and shortcomings associated with using one or the other in many different aspects.
Abstract: Cells are integral to all forms of life due to their compartmentalization by the plasma membrane. However, living organisms are immensely complex. Thus there is a need for simplified and controllable models of life for a deeper understanding of fundamental biological processes and man-made applications. This is where the bottom-up approach of synthetic biology comes from: a stepwise assembly of biomimetic functionalities ultimately into a protocell. A fundamental feature of such an endeavor is the generation and control of model membranes such as liposomes and polymersomes. We compare and contrast liposomes and polymersomes for a better a priori choice and design of vesicles and try to understand the advantages and shortcomings associated with using one or the other in many different aspects (properties, synthesis, self-assembly, applications) and which aspects have been studied and developed with each type and update the current development in the field.

628 citations

Journal ArticleDOI
TL;DR: This paper presents a probabilistic analysis of the stationary phase replacement of Na6(CO3)(SO4)/ Na2SO4 in horseshoe clusters and shows clear trends in the number of stationary phases and in the stationary phases of Na2CO3.
Abstract: Kepa Ruiz-Mirazo,†,∥ Carlos Briones,‡,∥ and Andreś de la Escosura* †Biophysics Unit (CSIC-UPV/EHU), Leioa, and Department of Logic and Philosophy of Science, University of the Basque Country, Avenida de Tolosa 70, 20080 Donostia−San Sebastiań, Spain ‡Department of Molecular Evolution, Centro de Astrobiología (CSIC−INTA, associated to the NASA Astrobiology Institute), Carretera de Ajalvir, Km 4, 28850 Torrejoń de Ardoz, Madrid, Spain Organic Chemistry Department, Universidad Autońoma de Madrid, Cantoblanco, 28049 Madrid, Spain

616 citations

Journal ArticleDOI
TL;DR: In the coming years, cell-free protein synthesis promises new industrial processes where short protein production timelines are crucial as well as innovative approaches to a wide range of applications.

613 citations