scispace - formally typeset
Search or ask a question
Author

Jongwoo Shin

Bio: Jongwoo Shin is an academic researcher from KAIST. The author has contributed to research in topics: Spontaneous emission & Graphene. The author has an hindex of 9, co-authored 11 publications receiving 745 citations.

Papers
More filters
Journal ArticleDOI
Gyeong Sook Bang1, Kwan Woo Nam1, Jong Yun Kim1, Jongwoo Shin1, Jang Wook Choi1, Sung-Yool Choi1 
TL;DR: A facile liquid-phase exfoliation method is reported to improve theExfoliation efficiency for single-layer MoS2 sheets in 1-methyl-2-pyrrolidinone (NMP) with a sodium hydroxide (NaOH) assistant and stable operation of sodium-ion battery is demonstrated by using the exfoliated MoS1-rGO composite as anode materials.
Abstract: Two-dimensional (2D) molybdenum disulfide (MoS2) has been taken much attention for various applications, such as catalyst, energy storage, and electronics. However, the lack of effective exfoliation methods for obtaining 2D materials in a large quantity has been one of the technical barriers for the real applications. We report a facile liquid-phase exfoliation method to improve the exfoliation efficiency for single-layer MoS2 sheets in 1-methyl-2-pyrrolidinone (NMP) with a sodium hydroxide (NaOH) assistant. The concentration of the exfoliated MoS2 nanosheets was greatly improved compared to that achieved with conventional liquid-phase exfoliation methods using NMP solvent. We demonstrate stable operation of sodium-ion battery by using the exfoliated MoS2 and MoS2-rGO composite as anode materials.

438 citations

Journal ArticleDOI
11 Jul 2014-ACS Nano
TL;DR: This work demonstrates the synthesis of large-area MoSe2 with high quality and uniformity by selenization of MoO3 via chemical vapor deposition on arbitrary substrates such as SiO2 and sapphire and demonstrates the development of highly controlled heterostructures of two-dimensional materials.
Abstract: Layered structures of transition metal dichalcogenides stacked by van der Waals interactions are now attracting the attention of many researchers because they have fascinating electronic, optical, thermoelectric, and catalytic properties emerging at the monolayer limit. However, the commonly used methods for preparing monolayers have limitations of low yield and poor extendibility into large-area applications. Herein, we demonstrate the synthesis of large-area MoSe2 with high quality and uniformity by selenization of MoO3 via chemical vapor deposition on arbitrary substrates such as SiO2 and sapphire. The resultant monolayer was intrinsically doped, as evidenced by the formation of charged excitons under low-temperature photoluminescence analysis. A van der Waals heterostructure of MoSe2 on graphene was also demonstrated. Interestingly, the MoSe2/graphene heterostructures show strong quenching of the characteristic photoluminescence from MoSe2, indicating the rapid transfer of photogenerated charge carrie...

208 citations

Journal ArticleDOI
01 Jan 2015-Small
TL;DR: This method involves direct delamination of single-layer graphene from a growth substrate, resulting in transferred graphene with nearly zero Dirac voltage due to the absence of residues that would originate from metal etching.
Abstract: A method of graphene transfer without metal etching is developed to minimize the contamination of graphene in the transfer process and to endow the transfer process with a greater degree of freedom. The method involves direct delamination of single-layer graphene from a growth substrate, resulting in transferred graphene with nearly zero Dirac voltage due to the absence of residues that would originate from metal etching. Several demonstrations are also presented to show the high degree of freedom and the resulting versatility of this transfer method.

63 citations

Journal ArticleDOI
TL;DR: A GaAs/AlAs microcavity containing six InGaAs quantum wells was grown, and the sample was then etched via chemically assisted ion-beam etching to form 50μm-diam cylindrical mesas.
Abstract: A GaAs/AlAs microcavity containing six InGaAs quantum wells was grown, and the sample was then etched via chemically‐assisted ion‐beam etching to form 50‐μm‐diam cylindrical mesas. The formation of native oxides, accomplished by baking the samples at 400 °C in the presence of a pressurized N2/H2O vapor line, lowered the refractive index of the AlAs layers to 1.5. The higher refractive index contrast more effectively confined the intracavity field, leading to well‐resolved reflectivity dips with an exciton‐polariton splitting of 6.72 nm=9.44 meV at room temperature.

30 citations

Journal ArticleDOI
He Shin1, Young-Gu Ju1, Jongwoo Shin1, JH Ser1, T Kim1, EK Lee1, In Young Kim2, Yong-Hee Lee 
TL;DR: In this article, a low-threshold vertical-cavity surface-emitting laser with Al/sub 0.11/Ga/sub sub 0.89/Al oxide apertures was fabricated for 780 nm wavelength emission.
Abstract: Low threshold vertical-cavity surface-emitting lasers with Al/sub 0.11/Ga/sub 0.89/As four quantum wells for 780 nm wavelength emission are fabricated using aluminum oxide apertures. The fabrication process requires only single step mask alignment. The 3.4 /spl mu/m square laser exhibits a low threshold current of 200 /spl mu/A, which is more than an order of magnitude smaller than the previous values obtained at 780 nm. Singlemode peak output power is 1.1 mW. This 3.4 /spl mu/m laser is found to operate in the fundamental transverse mode over the complete operating current range. The 7.6 /spl mu/m square laser shows peak output power of 2.7 mW.

30 citations


Cited by
More filters
Journal ArticleDOI
24 Nov 2015-ACS Nano
TL;DR: Insight is provided into the theoretical modeling and understanding of the van der Waals forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies.
Abstract: The isolation of graphene in 2004 from graphite was a defining moment for the “birth” of a field: two-dimensional (2D) materials In recent years, there has been a rapidly increasing number of papers focusing on non-graphene layered materials, including transition-metal dichalcogenides (TMDs), because of the new properties and applications that emerge upon 2D confinement Here, we review significant recent advances and important new developments in 2D materials “beyond graphene” We provide insight into the theoretical modeling and understanding of the van der Waals (vdW) forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies Additionally, we highlight recent breakthroughs in TMD synthesis and characterization and discuss the newest families of 2D materials, including monoelement 2D materials (ie, silicene, phosphorene, etc) and transition metal carbide- and carbon nitride-based MXenes We then discuss the doping and functionalization of 2

2,036 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the recent progress and challenges of 2D van der Waals interactions and offer a perspective on the exploration of 2DLM-based vdWHs for future application in electronics and optoelectronics.
Abstract: Two-dimensional layered materials (2DLMs) have been a central focus of materials research since the discovery of graphene just over a decade ago. Each layer in 2DLMs consists of a covalently bonded, dangling-bond-free lattice and is weakly bound to neighbouring layers by van der Waals interactions. This makes it feasible to isolate, mix and match highly disparate atomic layers to create a wide range of van der Waals heterostructures (vdWHs) without the constraints of lattice matching and processing compatibility. Exploiting the novel properties in these vdWHs with diverse layering of metals, semiconductors or insulators, new designs of electronic devices emerge, including tunnelling transistors, barristors and flexible electronics, as well as optoelectronic devices, including photodetectors, photovoltaics and light-emitting devices with unprecedented characteristics or unique functionalities. We review the recent progress and challenges, and offer our perspective on the exploration of 2DLM-based vdWHs for future application in electronics and optoelectronics. With a dangling-bond-free surface, two dimensional layered materials (2DLMs) can enable the creation of diverse van der Waals heterostructures (vdWHs) without the conventional constraint of lattice matching or process compatibility. This Review discusses the recent advances in exploring 2DLM vdWHs for future electronics and optoelectronics.

1,850 citations

Journal ArticleDOI
TL;DR: The essential Raman scattering processes of the entire first- and second-order modes in intrinsic graphene are described and the extensive capabilities of Raman spectroscopy for the investigation of the fundamental properties of graphene under external perturbations are described.
Abstract: Graphene-based materials exhibit remarkable electronic, optical, and mechanical properties, which has resulted in both high scientific interest and huge potential for a variety of applications. Furthermore, the family of graphene-based materials is growing because of developments in preparation methods. Raman spectroscopy is a versatile tool to identify and characterize the chemical and physical properties of these materials, both at the laboratory and mass-production scale. This technique is so important that most of the papers published concerning these materials contain at least one Raman spectrum. Thus, here, we systematically review the developments in Raman spectroscopy of graphene-based materials from both fundamental research and practical (i.e., device applications) perspectives. We describe the essential Raman scattering processes of the entire first- and second-order modes in intrinsic graphene. Furthermore, the shear, layer-breathing, G and 2D modes of multilayer graphene with different stacking orders are discussed. Techniques to determine the number of graphene layers, to probe resonance Raman spectra of monolayer and multilayer graphenes and to obtain Raman images of graphene-based materials are also presented. The extensive capabilities of Raman spectroscopy for the investigation of the fundamental properties of graphene under external perturbations are described, which have also been extended to other graphene-based materials, such as graphene quantum dots, carbon dots, graphene oxide, nanoribbons, chemical vapor deposition-grown and SiC epitaxially grown graphene flakes, composites, and graphene-based van der Waals heterostructures. These fundamental properties have been used to probe the states, effects, and mechanisms of graphene materials present in the related heterostructures and devices. We hope that this review will be beneficial in all the aspects of graphene investigations, from basic research to material synthesis and device applications.

1,184 citations

Journal ArticleDOI
03 Sep 1998-Nature
TL;DR: In this article, an organic semiconductor microcavity that operates in the strong-coupling regime was shown to have characteristic mixing of the exciton and photon modes (anti-crossing), and a room-temperature vacuum Rabi splitting.
Abstract: The modification and control of exciton–photon interactions in semiconductors is of both fundamental1,2,3,4 and practical interest, being of direct relevance to the design of improved light-emitting diodes, photodetectors and lasers5,6,7. In a semiconductor microcavity, the confined electromagnetic field modifies the optical transitions of the material. Two distinct types of interaction are possible: weak and strong coupling1,2,3,4. In the former perturbative regime, the spectral and spatial distribution of the emission is modified but exciton dynamics are little altered. In the latter case, however, mixing of exciton and photon states occurs leading to strongly modified dynamics. Both types of effect have been observed in planar microcavity structures in inorganic semiconductor quantum wells and bulk layers1,2,3,4,5,6,7,8. But organic semiconductor microcavities have been studied only in the weak-coupling regime9,10,11,12,13,14,15,16,17,18. Here we report an organic semiconductor microcavity that operates in the strong-coupling regime. We see characteristic mixing of the exciton and photon modes (anti-crossing), and a room-temperature vacuum Rabi splitting (an indicator of interaction strength) that is an order of magnitude larger than the previously reported highest values for inorganic semiconductors. Our results may lead to new structures and device concepts incorporating hybrid states of organic and inorganic excitons19, and suggest that polariton lasing20,21,22 may be possible.

770 citations

Journal ArticleDOI
TL;DR: The state-of-the-art in photodetectors based on semiconducting 2D materials are reviewed, focusing on the transition metal dichalcogenides, novel van der Waals materials, black phosphorus, and heterostructures.
Abstract: Two-dimensional (2D) materials have attracted a great deal of interest in recent years. This family of materials allows for the realization of versatile electronic devices and holds promise for next-generation (opto)electronics. Their electronic properties strongly depend on the number of layers, making them interesting from a fundamental standpoint. For electronic applications, semiconducting 2D materials benefit from sizable mobilities and large on/off ratios, due to the large modulation achievable via the gate field-effect. Moreover, being mechanically strong and flexible, these materials can withstand large strain (>10%) before rupture, making them interesting for strain engineering and flexible devices. Even in their single layer form, semiconducting 2D materials have demonstrated efficient light absorption, enabling large responsivity in photodetectors. Therefore, semiconducting layered 2D materials are strong candidates for optoelectronic applications, especially for photodetection. Here, we review the state-of-the-art in photodetectors based on semiconducting 2D materials, focusing on the transition metal dichalcogenides, novel van der Waals materials, black phosphorus, and heterostructures.

746 citations