Author

# Joos Vandewalle

Other affiliations: University of Virginia, Catholic University of Leuven, IMEC ...read more

Bio: Joos Vandewalle is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Artificial neural network & Cellular neural network. The author has an hindex of 73, co-authored 747 publications receiving 39621 citations. Previous affiliations of Joos Vandewalle include University of Virginia & Catholic University of Leuven.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: A least squares version for support vector machine (SVM) classifiers that follows from solving a set of linear equations, instead of quadratic programming for classical SVM's.

Abstract: In this letter we discuss a least squares version for support vector machine (SVM) classifiers. Due to equality type constraints in the formulation, the solution follows from solving a set of linear equations, instead of quadratic programming for classical SVM‘s. The approach is illustrated on a two-spiral benchmark classification problem.

8,811 citations

••

TL;DR: There is a strong analogy between several properties of the matrix and the higher-order tensor decomposition; uniqueness, link with the matrix eigenvalue decomposition, first-order perturbation effects, etc., are analyzed.

Abstract: We discuss a multilinear generalization of the singular value decomposition. There is a strong analogy between several properties of the matrix and the higher-order tensor decomposition; uniqueness, link with the matrix eigenvalue decomposition, first-order perturbation effects, etc., are analyzed. We investigate how tensor symmetries affect the decomposition and propose a multilinear generalization of the symmetric eigenvalue decomposition for pair-wise symmetric tensors.

4,101 citations

•

12 Nov 2002TL;DR: Support Vector Machines Basic Methods of Least Squares Support Vector Machines Bayesian Inference for LS-SVM Models Robustness Large Scale Problems LS- sVM for Unsupervised Learning LS- SVM for Recurrent Networks and Control.

Abstract: Support Vector Machines Basic Methods of Least Squares Support Vector Machines Bayesian Inference for LS-SVM Models Robustness Large Scale Problems LS-SVM for Unsupervised Learning LS-SVM for Recurrent Networks and Control.

2,983 citations

••

TL;DR: A multilinear generalization of the best rank-R approximation problem for matrices, namely, the approximation of a given higher-order tensor, in an optimal least-squares sense, by a tensor that has prespecified column rank value, rowRank value, etc.

Abstract: In this paper we discuss a multilinear generalization of the best rank-R approximation problem for matrices, namely, the approximation of a given higher-order tensor, in an optimal least-squares sense, by a tensor that has prespecified column rank value, row rank value, etc For matrices, the solution is conceptually obtained by truncation of the singular value decomposition (SVD); however, this approach does not have a straightforward multilinear counterpart We discuss higher-order generalizations of the power method and the orthogonal iteration method

1,638 citations

•

01 Jan 1987TL;DR: This paper presents a meta-analyses of the relationships between total least squares estimation and classical linear regression in Multicollinearity problems and some of the properties of these relationships are explained.

Abstract: Introduction Basic principles of the total least squares problem Extensions of the basic total least squares problem Direct speed Improvement of the total least squares computations Iterative speed Improvement for solving slowly varying total least squares problems Algebraic Connections Between total least squares and least squares problems Sensitivity analysis of total least squares and least squares problems in the presence of errors in all data Statistical properties of the total least squares problem Algebraic connections between total least squares estimation and classical linear regression in Multicollinearity problems Conclusions.

1,336 citations

##### Cited by

More filters

•

01 Jan 1996TL;DR: A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols.

Abstract: From the Publisher:
A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols; more than 200 tables and figures; more than 1,000 numbered definitions, facts, examples, notes, and remarks; and over 1,250 significant references, including brief comments on each paper.

13,597 citations

••

[...]

TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.

Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

•

23 Nov 2005TL;DR: The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics, and deals with the supervised learning problem for both regression and classification.

Abstract: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

11,357 citations

••

TL;DR: This survey provides an overview of higher-order tensor decompositions, their applications, and available software.

Abstract: This survey provides an overview of higher-order tensor decompositions, their applications, and available software. A tensor is a multidimensional or $N$-way array. Decompositions of higher-order tensors (i.e., $N$-way arrays with $N \geq 3$) have applications in psycho-metrics, chemometrics, signal processing, numerical linear algebra, computer vision, numerical analysis, data mining, neuroscience, graph analysis, and elsewhere. Two particular tensor decompositions can be considered to be higher-order extensions of the matrix singular value decomposition: CANDECOMP/PARAFAC (CP) decomposes a tensor as a sum of rank-one tensors, and the Tucker decomposition is a higher-order form of principal component analysis. There are many other tensor decompositions, including INDSCAL, PARAFAC2, CANDELINC, DEDICOM, and PARATUCK2 as well as nonnegative variants of all of the above. The N-way Toolbox, Tensor Toolbox, and Multilinear Engine are examples of software packages for working with tensors.

9,227 citations

••

TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.

Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations