scispace - formally typeset
Search or ask a question
Author

Joran Rolland

Bio: Joran Rolland is an academic researcher from École normale supérieure de Lyon. The author has contributed to research in topics: Turbulence & Couette flow. The author has an hindex of 12, co-authored 37 publications receiving 498 citations. Previous affiliations of Joran Rolland include Goethe University Frankfurt & Claude Bernard University Lyon 1.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the two-phase flow structures of attached sheet cavitation in Venturi geometries were described and a double optical probe measurements were performed and special data processing methods were developed to estimate void ratio and velocity fields for cold water flows.
Abstract: Correlated experimental and numerical studies were carried out to analyze cavitating flows and to describe the two-phase flow structures of attached sheet cavitation in Venturi geometries. New double optical probe measurements were performed and special data processing methods were developed to estimate void ratio and velocity fields for cold water flows. By applying a computational method previously developed in LEGI (Laboratoire des Ecoulements Geophysiques et Industriels, Grenoble, France) based on the code FineTM/Turbo and on a barotropic approach, several steady calculations were performed in cold water cavitating flows. Local and global analyzes based on comparisons between experimental and numerical results were proposed.

112 citations

Journal ArticleDOI
TL;DR: In this article, the authors used adaptive multilevel splitting (AMS) to get a very large statistics of transition paths, the extremely rare transitions from one state of the system to another.
Abstract: Many turbulent flows undergo drastic and abrupt configuration changes with huge impacts. As a paradigmatic example we study the multistability of jet dynamics in a barotropic beta plane model of atmosphere dynamics. It is considered as the Ising model for Jupiter troposphere dynamics. Using the adaptive multilevel splitting, a rare event algorithm, we are able to get a very large statistics of transition paths, the extremely rare transitions from one state of the system to another. This new approach opens the way for addressing a set of questions that are out of reach through direct numerical simulations. We demonstrate for the first time the concentration of transition paths close to instantons, in a numerical simulation of genuine turbulent flows. We show that the transition is a noise-activated nucleation of vorticity bands. We address for the first time the existence of Arrhenius laws in turbulent flows. The methodology we developed shall prove useful to study many other transitions related to drastic changes for the turbulent dynamics of climate, geophysical, astrophysical, and engineering applications. This opens a new range of studies impossible so far, and bring turbulent phenomena in the realm of nonequilibrium statistical mechanics.

65 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compute and analyse the transition rates and duration of reactive trajectories of the stochastic 1-D Allen-Cahn equations for both the Freidlin-Wentzell regime (weak noise or temperature limit) and finite-amplitude white noise, as well as for small and large domains.
Abstract: In this article we compute and analyse the transition rates and duration of reactive trajectories of the stochastic 1-D Allen–Cahn equations for both the Freidlin–Wentzell regime (weak noise or temperature limit) and finite-amplitude white noise, as well as for small and large domain. We demonstrate that extremely rare reactive trajectories corresponding to direct transitions between two metastable states are efficiently computed using an algorithm called adaptive multilevel splitting. This algorithm is dedicated to the computation of rare events and is able to provide ensembles of reactive trajectories in a very efficient way. In the small noise limit, our numerical results are in agreement with large-deviation predictions such as instanton-like solutions, mean first passages and escape probabilities. We show that the duration of reactive trajectories follows a Gumbel distribution like for one degree of freedom systems. Moreover, the mean duration growths logarithmically with the inverse temperature. The prefactor given by the potential curvature grows exponentially with size. The main novelty of our work is that we also perform an analysis of reactive trajectories for large noises and large domains. In this case, we show that the position of the reactive front is essentially a random walk. This time, the mean duration grows linearly with the inverse temperature and quadratically with the size. Using a phenomenological description of the system, we are able to calculate the transition rate, although the dynamics is described by neither Freidlin–Wentzell or Eyring–Kramers type of results. Numerical results confirm our analysis.

45 citations

Journal ArticleDOI
TL;DR: This work investigates the convergence in law of the algorithm as a function of the timestep for several simple stochastic models and considers the average duration of reactive trajectories for which no theoretical predictions exist, and investigates a three-state Markov chain which reproduces this phenomenon.

35 citations

Journal ArticleDOI
TL;DR: In this paper, a model for plane Couette flow with a continuous transition from wall-bounded flow to turbulent and laminar domains is presented. But the model is adapted to the long time, large aspect-ratio limit.
Abstract: Plane Couette flow, the flow between two parallel planes moving in opposite directions, is an example of wall-bounded flow experiencing a transition to turbulence with an ordered coexistence of turbulent and laminar domains in some range of Reynolds numbers [R g, R t] . When the aspect-ratio is sufficiently large, this coexistence occurs in the form of alternately turbulent and laminar oblique bands. As R goes up trough the upper threshold R t, the bands disappear progressively to leave room to a uniform regime of featureless turbulence. This continuous transition is studied here by means of under-resolved numerical simulations understood as a modelling approach adapted to the long time, large aspect-ratio limit. The state of the system is quantitatively characterised using standard observables (turbulent fraction and turbulence intensity inside the bands). A pair of complex order parameters is defined for the pattern which is further analysed within a standard Ginzburg–Landau formalism. Coefficients of the model turn out to be comparable to those experimentally determined for cylindrical Couette flow.

34 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Journal ArticleDOI
28 Jan 1983-Science
TL;DR: Specialized experiments with atmosphere and coupled models show that the main damping mechanism for sea ice region surface temperature is reduced upward heat flux through the adjacent ice-free oceans resulting in reduced atmospheric heat transport into the region.
Abstract: The potential for sea ice-albedo feedback to give rise to nonlinear climate change in the Arctic Ocean – defined as a nonlinear relationship between polar and global temperature change or, equivalently, a time-varying polar amplification – is explored in IPCC AR4 climate models. Five models supplying SRES A1B ensembles for the 21 st century are examined and very linear relationships are found between polar and global temperatures (indicating linear Arctic Ocean climate change), and between polar temperature and albedo (the potential source of nonlinearity). Two of the climate models have Arctic Ocean simulations that become annually sea ice-free under the stronger CO 2 increase to quadrupling forcing. Both of these runs show increases in polar amplification at polar temperatures above-5 o C and one exhibits heat budget changes that are consistent with the small ice cap instability of simple energy balance models. Both models show linear warming up to a polar temperature of-5 o C, well above the disappearance of their September ice covers at about-9 o C. Below-5 o C, surface albedo decreases smoothly as reductions move, progressively, to earlier parts of the sunlit period. Atmospheric heat transport exerts a strong cooling effect during the transition to annually ice-free conditions. Specialized experiments with atmosphere and coupled models show that the main damping mechanism for sea ice region surface temperature is reduced upward heat flux through the adjacent ice-free oceans resulting in reduced atmospheric heat transport into the region.

1,356 citations

Journal ArticleDOI
TL;DR: In this paper, the cavitating flow around a NACA66 hydrofoil is studied numerically with particular emphasis on understanding the cavitation structures and the shedding dynamics, including the cavity growth, break-off and collapse downstream.

335 citations

Journal ArticleDOI
TL;DR: In this article, the structure of the cavitating flow around a twisted hydrofoil was investigated numerically using the mass transfer cavitation model and the modified RNG k-e model with a local density correction for turbulent eddy viscosity.

277 citations

Journal ArticleDOI
TL;DR: In this paper, a one-fluid compressible Reynolds-Averaged Navier-Stokes (RANS) solver with a preconditioning scheme is presented.

182 citations