scispace - formally typeset
Search or ask a question
Author

Jordan Boyd-Graber

Bio: Jordan Boyd-Graber is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Topic model & Question answering. The author has an hindex of 38, co-authored 175 publications receiving 7846 citations. Previous affiliations of Jordan Boyd-Graber include Princeton University & California Institute of Technology.


Papers
More filters
Proceedings Article
07 Dec 2009
TL;DR: New quantitative methods for measuring semantic meaning in inferred topics are presented, showing that they capture aspects of the model that are undetected by previous measures of model quality based on held-out likelihood.
Abstract: Probabilistic topic models are a popular tool for the unsupervised analysis of text, providing both a predictive model of future text and a latent topic representation of the corpus. Practitioners typically assume that the latent space is semantically meaningful. It is used to check models, summarize the corpus, and guide exploration of its contents. However, whether the latent space is interpretable is in need of quantitative evaluation. In this paper, we present new quantitative methods for measuring semantic meaning in inferred topics. We back these measures with large-scale user studies, showing that they capture aspects of the model that are undetected by previous measures of model quality based on held-out likelihood. Surprisingly, topic models which perform better on held-out likelihood may infer less semantically meaningful topics.

1,878 citations

Proceedings ArticleDOI
01 Jul 2015
TL;DR: This work presents a simple deep neural network that competes with and, in some cases, outperforms such models on sentiment analysis and factoid question answering tasks while taking only a fraction of the training time.
Abstract: Many existing deep learning models for natural language processing tasks focus on learning the compositionality of their inputs, which requires many expensive computations. We present a simple deep neural network that competes with and, in some cases, outperforms such models on sentiment analysis and factoid question answering tasks while taking only a fraction of the training time. While our model is syntactically-ignorant, we show significant improvements over previous bag-of-words models by deepening our network and applying a novel variant of dropout. Moreover, our model performs better than syntactic models on datasets with high syntactic variance. We show that our model makes similar errors to syntactically-aware models, indicating that for the tasks we consider, nonlinearly transforming the input is more important than tailoring a network to incorporate word order and syntax.

824 citations

Proceedings ArticleDOI
01 Oct 2014
TL;DR: This work introduces a recursive neural network model, qanta, that can reason over question text input by modeling textual compositionality and applies it to a dataset of questions from a trivia competition called quiz bowl.
Abstract: Text classification methods for tasks like factoid question answering typically use manually defined string matching rules or bag of words representations. These methods are ineective when question text contains very few individual words (e.g., named entities) that are indicative of the answer. We introduce a recursive neural network (rnn) model that can reason over such input by modeling textual compositionality. We apply our model, qanta, to a dataset of questions from a trivia competition called quiz bowl. Unlike previous rnn models, qanta learns word and phrase-level representations that combine across sentences to reason about entities. The model outperforms multiple baselines and, when combined with information retrieval methods, rivals the best human players.

376 citations

Proceedings ArticleDOI
01 Jun 2014
TL;DR: A RNN framework is applied to the task of identifying the political position evinced by a sentence to show the importance of modeling subsentential elements and outperforms existing models on a newly annotated dataset and an existing dataset.
Abstract: An individual’s words often reveal their political ideology. Existing automated techniques to identify ideology from text focus on bags of words or wordlists, ignoring syntax. Taking inspiration from recent work in sentiment analysis that successfully models the compositional aspect of language, we apply a recursive neural network (RNN) framework to the task of identifying the political position evinced by a sentence. To show the importance of modeling subsentential elements, we crowdsource political annotations at a phrase and sentence level. Our model outperforms existing models on our newly annotated dataset and an existing dataset.

277 citations

Journal ArticleDOI
19 Jun 2011
TL;DR: This paper presents a mechanism for giving users a voice by encoding users’ feedback to topic models as correlations between words into a topic model, and develops more efficient inference algorithms for tree-based topic models.
Abstract: Topic models have been used extensively as a tool for corpus exploration, and a cottage industry has developed to tweak topic models to better encode human intuitions or to better model data. However, creating such extensions requires expertise in machine learning unavailable to potential end-users of topic modeling software. In this work, we develop a framework for allowing users to iteratively refine the topics discovered by models such as latent Dirichlet allocation (LDA) by adding constraints that enforce that sets of words must appear together in the same topic. We incorporate these constraints interactively by selectively removing elements in the state of a Markov Chain used for inference; we investigate a variety of methods for incorporating this information and demonstrate that these interactively added constraints improve topic usefulness for simulated and actual user sessions.

260 citations


Cited by
More filters
Proceedings Article
28 May 2020
TL;DR: GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic.
Abstract: Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.

10,132 citations

Proceedings ArticleDOI
Yoon Kim1
25 Aug 2014
TL;DR: The CNN models discussed herein improve upon the state of the art on 4 out of 7 tasks, which include sentiment analysis and question classification, and are proposed to allow for the use of both task-specific and static vectors.
Abstract: We report on a series of experiments with convolutional neural networks (CNN) trained on top of pre-trained word vectors for sentence-level classification tasks. We show that a simple CNN with little hyperparameter tuning and static vectors achieves excellent results on multiple benchmarks. Learning task-specific vectors through fine-tuning offers further gains in performance. We additionally propose a simple modification to the architecture to allow for the use of both task-specific and static vectors. The CNN models discussed herein improve upon the state of the art on 4 out of 7 tasks, which include sentiment analysis and question classification.

9,776 citations

Book
24 Aug 2012
TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

8,059 citations

Posted Content
Yoon Kim1
TL;DR: In this article, CNNs are trained on top of pre-trained word vectors for sentence-level classification tasks and a simple CNN with little hyperparameter tuning and static vectors achieves excellent results on multiple benchmarks.
Abstract: We report on a series of experiments with convolutional neural networks (CNN) trained on top of pre-trained word vectors for sentence-level classification tasks. We show that a simple CNN with little hyperparameter tuning and static vectors achieves excellent results on multiple benchmarks. Learning task-specific vectors through fine-tuning offers further gains in performance. We additionally propose a simple modification to the architecture to allow for the use of both task-specific and static vectors. The CNN models discussed herein improve upon the state of the art on 4 out of 7 tasks, which include sentiment analysis and question classification.

7,826 citations

01 Jan 2009

7,241 citations