scispace - formally typeset
Search or ask a question
Author

Jordi Ortiz-Gil

Bio: Jordi Ortiz-Gil is an academic researcher. The author has contributed to research in topics: Schizophrenia & Working memory. The author has an hindex of 16, co-authored 23 publications receiving 1396 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Patients with schizophrenia show both failure to activate and failure to deactivate during performance of a working memory task, including an area in the anterior prefrontal/anterior cingulate cortex that corresponds to one of the two midline components of the ‘default mode network’ implicated in functions related to maintaining one's sense of self.
Abstract: BackgroundFunctional imaging studies using working memory tasks have documented both prefrontal cortex (PFC) hypo- and hyperactivation in schizophrenia. However, these studies have often failed to consider the potential role of task-related deactivation.MethodThirty-two patients with chronic schizophrenia and 32 age- and sex-matched normal controls underwent functional magnetic resonance imaging (fMRI) scanning while performing baseline, 1-back and 2-back versions of the n-back task. Linear models were used to obtain maps of activations and deactivations in the groups.ResultsThe controls showed activation in the expected frontal regions. There were also clusters of deactivation, particularly in the anterior cingulate/ventromedial PFC and the posterior cingulate cortex/precuneus. Compared to the controls, the schizophrenic patients showed reduced activation in the right dorsolateral prefrontal cortex (DLPFC) and other frontal areas. There was also an area in the anterior cingulate/ventromedial PFC where the patients showed apparently greater activation than the controls. This represented a failure of deactivation in the schizophrenic patients. Failure to activate was a function of the patients' impaired performance on the n-back task, whereas the failure to deactivate was less performance dependent.ConclusionsPatients with schizophrenia show both failure to activate and failure to deactivate during performance of a working memory task. The area of failure of deactivation is in the anterior prefrontal/anterior cingulate cortex and corresponds to one of the two midline components of the ‘default mode network’ implicated in functions related to maintaining one's sense of self.

305 citations

Journal ArticleDOI
TL;DR: Functional remediation showed efficacy in improving the functional outcome of a sample of euthymic bipolar patients as compared with treatment as usual, suggesting an interaction between treatment assignment and time.
Abstract: This novel neurocognitive intervention significantly improved occupational and interpersonal functioning in patients with bipolar I and II disorder

244 citations

Journal ArticleDOI
TL;DR: The medial frontal region identified by these three imaging techniques corresponds to the anterior midline node of the default mode network, a brain system which is believed to support internally directed thought, a state of watchfulness, and/or the maintenance of one's sense of self, and which is of considerable current interest in neuropsychiatric disorders.
Abstract: Neuroimaging studies have found evidence of altered brain structure and function in schizophrenia, but have had complex findings regarding the localization of abnormality. We applied multimodal imaging (voxel-based morphometry (VBM), functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) combined with tractography) to 32 chronic schizophrenic patients and matched healthy controls. At a conservative threshold of P=0.01 corrected, structural and functional imaging revealed overlapping regions of abnormality in the medial frontal cortex. DTI found that white matter abnormality predominated in the anterior corpus callosum, and analysis of the anatomical connectivity of representative seed regions again implicated fibres projecting to the medial frontal cortex. There was also evidence of convergent abnormality in the dorsolateral prefrontal cortex, although here the laterality was less consistent across techniques. The medial frontal region identified by these three imaging techniques corresponds to the anterior midline node of the default mode network, a brain system which is believed to support internally directed thought, a state of watchfulness, and/or the maintenance of one's sense of self, and which is of considerable current interest in neuropsychiatric disorders.

175 citations

Journal ArticleDOI
TL;DR: A method to estimate maps of net levels of connectivity in the resting brain is described, and it is applied to look for differential patterns of connectivity on the basis of DMN–striatum deviant relation in schizophrenia.
Abstract: Abnormal interactions between areas of the brain have been pointed as possible causes for schizophrenia. However, the nature of these disturbances and the anatomical location of the regions involved are still unclear. Here, we describe a method to estimate maps of net levels of connectivity in the resting brain, and we apply it to look for differential patterns of connectivity in schizophrenia. This method uses partial coherences as a basic measure of covariability, and it minimises the effect of major physiological noise. When overall (net) connectivity maps of a sample of 40 patients with schizophrenia were compared with the maps from a matched sample of 40 controls, a single area of abnormality was found. It is an area of patient hyper-connectivity and is located frontally, in medial and orbital structures, clearly overlapping the anterior node of the default mode network (DMN). When this area is used as a region of interest in a second-level analysis, it shows functional hyper-connections with several cortical and subcortical structures. Interestingly, the most significant abnormality is found with the caudate, which has a bilateral pattern of abnormality, pointing to a possible DMN-striatum deviant relation in schizophrenia. However, hyper-connectivity observed with other regions (right hippocampus and amygdala, and other cortical structures) suggests a more pervasive alteration of brain connectivity in this disease.

134 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review defines the DMN concept with regard to its neuro-anatomy, its functional organisation through low frequency neuronal oscillations, its relation to other recently discovered low frequency resting state networks, and the cognitive functions it is thought to serve, and introduces methodological and analytical issues and challenges.

1,515 citations

Journal ArticleDOI
TL;DR: Among patients, the magnitude of MPFC task suppression negatively correlated with default connectivity, suggesting an association between the hyperactivation and hyperconnectivity in schizophrenia.
Abstract: We examined the status of the neural network mediating the default mode of brain function, which typically exhibits greater activation during rest than during task, in patients in the early phase of schizophrenia and in young first-degree relatives of persons with schizophrenia. During functional MRI, patients, relatives, and controls alternated between rest and performance of working memory (WM) tasks. As expected, controls exhibited task-related suppression of activation in the default network, including medial prefrontal cortex (MPFC) and posterior cingulate cortex/precuneus. Patients and relatives exhibited significantly reduced task-related suppression in MPFC, and these reductions remained after controlling for performance. Increased task-related MPFC suppression correlated with better WM performance in patients and relatives and with less psychopathology in all 3 groups. For WM task performance, patients and relatives had greater activation in right dorsolateral prefrontal cortex (DLPFC) than controls. During rest and task, patients and relatives exhibited abnormally high functional connectivity within the default network. The magnitudes of default network connectivity during rest and task correlated with psychopathology in the patients. Further, during both rest and task, patients exhibited reduced anticorrelations between MPFC and DLPFC, a region that was hyperactivated by patients and relatives during WM performance. Among patients, the magnitude of MPFC task suppression negatively correlated with default connectivity, suggesting an association between the hyperactivation and hyperconnectivity in schizophrenia. Hyperactivation (reduced task-related suppression) of default regions and hyperconnectivity of the default network may contribute to disturbances of thought in schizophrenia and risk for the illness.

1,325 citations

Journal ArticleDOI
TL;DR: It is concluded that people with schizophrenia tend to have a less strongly integrated, more diverse profile of brain functional connectivity, associated with a less hub-dominated configuration of complex brain functional networks.
Abstract: Schizophrenia has often been conceived as a disorder of connectivity between components of large-scale brain networks. We tested this hypothesis by measuring aspects of both functional connectivity and functional network topology derived from resting-state fMRI time series acquired at 72 cerebral regions over 17 min from 15 healthy volunteers (14 male, 1 female) and 12 people diagnosed with schizophrenia (10 male, 2 female). We investigated between-group differences in strength and diversity of functional connectivity in the 0.06-0.125 Hz frequency interval, and some topological properties of undirected graphs constructed from thresholded interregional correlation matrices. In people with schizophrenia, strength of functional connectivity was significantly decreased, whereas diversity of functional connections was increased. Topologically, functional brain networks had reduced clustering and small-worldness, reduced probability of high-degree hubs, and increased robustness in the schizophrenic group. Reduced degree and clustering were locally significant in medial parietal, premotor and cingulate, and right orbitofrontal cortical nodes of functional networks in schizophrenia. Functional connectivity and topological metrics were correlated with each other and with behavioral performance on a verbal fluency task. We conclude that people with schizophrenia tend to have a less strongly integrated, more diverse profile of brain functional connectivity, associated with a less hub-dominated configuration of complex brain functional networks. Alongside these behaviorally disadvantageous differences, however, brain networks in the schizophrenic group also showed a greater robustness to random attack, pointing to a possible benefit of the schizophrenia connectome, if less extremely expressed.

1,264 citations

Journal ArticleDOI
TL;DR: Functional magnetic resonance imaging studies have revealed that the DMN in the healthy brain is associated with stimulus-independent thought and self-reflection and that greater suppression of theDMN isassociated with better performance on attention-demanding tasks.
Abstract: Neuropsychiatric disorders are associated with abnormal function of the default mode network (DMN), a distributed network of brain regions more active during rest than during performance of many attention-demanding tasks and characterized by a high degree of functional connectivity (i.e., temporal correlations between brain regions). Functional magnetic resonance imaging studies have revealed that the DMN in the healthy brain is associated with stimulus-independent thought and self-reflection and that greater suppression of the DMN is associated with better performance on attention-demanding tasks. In schizophrenia and depression, the DMN is often found to be hyperactivated and hyperconnected. In schizophrenia this may relate to overly intensive self-reference and impairments in attention and working memory. In depression, DMN hyperactivity may be related to negative rumination. These findings are considered in terms of what is known about psychological functions supported by the DMN, and alteration of the DMN in other neuropsychiatric disorders.

1,137 citations

Journal ArticleDOI
TL;DR: The British Association for Psychopharmacology guidelines specify the scope and targets of treatment for bipolar disorder, and recommend strategies for the use of medicines in short-term treatment of episodes, relapse prevention and stopping treatment.
Abstract: The British Association for Psychopharmacology guidelines specify the scope and targets of treatment for bipolar disorder. The third version is based explicitly on the available evidence and presented, like previous Clinical Practice Guidelines, as recommendations to aid clinical decision making for practitioners: it may also serve as a source of information for patients and carers, and assist audit. The recommendations are presented together with a more detailed review of the corresponding evidence. A consensus meeting, involving experts in bipolar disorder and its treatment, reviewed key areas and considered the strength of evidence and clinical implications. The guidelines were drawn up after extensive feedback from these participants. The best evidence from randomized controlled trials and, where available, observational studies employing quasi-experimental designs was used to evaluate treatment options. The strength of recommendations has been described using the GRADE approach. The guidelines cover the diagnosis of bipolar disorder, clinical management, and strategies for the use of medicines in short-term treatment of episodes, relapse prevention and stopping treatment. The use of medication is integrated with a coherent approach to psychoeducation and behaviour change.

989 citations