Author
Jordina Torrents-Barrena
Bio: Jordina Torrents-Barrena is an academic researcher from Pompeu Fabra University. The author has contributed to research in topic(s): Twin-to-twin transfusion syndrome & Autoencoder. The author has an hindex of 4, co-authored 10 publication(s) receiving 66 citation(s).
Papers
More filters
TL;DR: This review covers state‐of‐the‐art segmentation and classification methodologies for the whole fetus and, more specifically, the fetal brain, lungs, liver, heart and placenta in magnetic resonance imaging and (3D) ultrasound for the first time.
Abstract: Fetal imaging is a burgeoning topic. New advancements in both magnetic resonance imaging and (3D) ultrasound currently allow doctors to diagnose fetal structural abnormalities such as those involved in twin-to-twin transfusion syndrome, gestational diabetes mellitus, pulmonary sequestration and hypoplasia, congenital heart disease, diaphragmatic hernia, ventriculomegaly, etc. Considering the continued breakthroughs in utero image analysis and (3D) reconstruction models, it is now possible to gain more insight into the ongoing development of the fetus. Best prenatal diagnosis performances rely on the conscious preparation of the clinicians in terms of fetal anatomy knowledge. Therefore, fetal imaging will likely span and increase its prevalence in the forthcoming years. This review covers state-of-the-art segmentation and classification methodologies for the whole fetus and, more specifically, the fetal brain, lungs, liver, heart and placenta in magnetic resonance imaging and (3D) ultrasound for the first time. Potential applications of the aforementioned methods into clinical settings are also inspected. Finally, improvements in existing approaches as well as most promising avenues to new areas of research are briefly outlined.
31 citations
TL;DR: This work proposes a novel fully‐automated method to segment the placenta and its peripheral blood vessels from fetal MRI, and suggests that this methodology can aid the diagnosis and surgical planning of severe fetal disorders.
Abstract: Recent advances in fetal magnetic resonance imaging (MRI) open the door to improved detection and characterization of fetal and placental abnormalities. Since interpreting MRI data can be complex and ambiguous, there is a need for robust computational methods able to quantify placental anatomy (including its vasculature) and function. In this work, we propose a novel fully-automated method to segment the placenta and its peripheral blood vessels from fetal MRI. First, a super-resolution reconstruction of the uterus is generated by combining axial, sagittal and coronal views. The placenta is then segmented using 3D Gabor filters, texture features and Support Vector Machines. A uterus edge-based instance selection is proposed to identify the support vectors defining the placenta boundary. Subsequently, peripheral blood vessels are extracted through a curvature-based corner detector. Our approach is validated on a rich set of 44 control and pathological cases: singleton and (normal / monochorionic) twin pregnancies between 25–37 weeks of gestation. Dice coefficients of 0.82 ± 0.02 and 0.81 ± 0.08 are achieved for placenta and its vasculature segmentation, respectively. A comparative analysis with state of the art convolutional neural networks (CNN), namely, 3D U-Net, V-Net, DeepMedic, Holistic3D Net, HighRes3D Net and Dense V-Net is also conducted for placenta localization, with our method outperforming all CNN approaches. Results suggest that our methodology can aid the diagnosis and surgical planning of severe fetal disorders.
18 citations
TL;DR: The proposed TTTS fetal surgery planning and simulation platform is integrated into a flexible C++ and MITK-based application to provide a full exploration of the intrauterine environment by simulating the fetoscope camera as well as the laser ablation.
Abstract: Twin-to-twin transfusion syndrome (TTTS) is a serious condition that may occur in pregnancies when two or more fetuses share the same placenta. It is characterized by abnormal vascular connections in the placenta that cause blood to flow unevenly between the babies. If left untreated, perinatal mortality occurs in 90% of cases, whilst neurological injuries are still present in TTTS survivors. Minimally invasive fetoscopic laser surgery is the standard and optimal treatment for this condition, but is technically challenging and can lead to complications. Acquiring and maintaining the required surgical skills need consistent practice, and a steep learning curve. An accurate preoperative planning is thus vital for complex TTTS cases. To this end, we propose the first TTTS fetal surgery planning and simulation platform. The soft tissue of the mother, the uterus, the umbilical cords, the placenta and its vascular tree are segmented and registered automatically from magnetic resonance imaging and 3D ultrasound using computer vision and deep learning techniques. The proposed state-of-the-art technology is integrated into a flexible C++ and MITK-based application to provide a full exploration of the intrauterine environment by simulating the fetoscope camera as well as the laser ablation, determining the correct entry point, training doctors’ movements and trajectory ahead of operation, which allows improving upon current practice. A comprehensive usability study is reported. Experienced surgeons rated highly our TTTS planner and simulator, thus being a potential tool to be implemented in real and complex TTTS surgeries.
7 citations
TL;DR: This work aims to efficiently segment different intrauterine tissues in fetal magnetic resonance imaging (MRI) and 3D ultrasound and suggests that combining the selected 10 radiomic features per anatomy along with DeepLabV3+ or BiSeNet architectures for MRI, and PSPNet or Tiramisu for 3D US, can lead to the highest fetal / maternal tissue segmentation performance, robustness, informativeness, and heterogeneity.
Abstract: Recent advances in fetal imaging open the door to enhanced detection of fetal disorders and computer-assisted surgical planning. However, precise segmentation of womb's tissues is challenging due to motion artifacts caused by fetal movements and maternal respiration during acquisition. This work aims to efficiently segment different intrauterine tissues in fetal magnetic resonance imaging (MRI) and 3D ultrasound (US). First, a large set of ninety-four radiomic features are extracted to characterize the mother uterus, placenta, umbilical cord, fetal lungs, and brain. The optimal features for each anatomy are identified using both K-best and Sequential Forward Feature Selection techniques. These features are then fed to a Support Vector Machine with instance balancing to accurately segment the intrauterine anatomies. To the best of our knowledge, this is the first time that "Radiomics" is expanded from classification tasks to segmentation purposes to deal with challenging fetal images. In addition, we evaluate several state-of-the-art deep learning-based segmentation approaches. Validation is extensively performed on a set of 60 axial MRI and 3D US images from pathological and clinical cases. Our results suggest that combining the selected 10 radiomic features per anatomy along with DeepLabV3+ or BiSeNet architectures for MRI, and PSPNet or Tiramisu for 3D US, can lead to the highest fetal / maternal tissue segmentation performance, robustness, informativeness, and heterogeneity. Therefore, this work opens new avenues for advancement of segmentation techniques and, in particular, for improved fetal surgical planning.
5 citations
08 Apr 2019
TL;DR: A fully-automated framework to achieve an accurate segmentation of the placenta and its peripheral vasculature in 3D US for twin-to-twin transfusion syndrome is proposed for the first time.
Abstract: Twin-to-twin transfusion syndrome is a serious condition that can affect pregnancies when identical twins share the placenta. In these cases, abnormal placental vessel connections (anastomoses) cause an uneven blood distribution between the babies. Ultrasound (US) enormously facilitates the assessment of these cases, but placenta segmentation is still a challenging task due to artifacts and high variability in its position, orientation, shape and appearance. We propose for the first time a fully-automated framework to achieve an accurate segmentation of the placenta and its peripheral vasculature in 3D US. A conditional Generative Adversarial Network is used to automatically identify the placenta. Afterwards, the entire vasculature is extracted using Modified Spatial Kernelized Fuzzy C-Means and Markov Random Fields. The method is tested on singleton and twin pregnancies from 15 to 38 gestational weeks, achieving a mean Dice coefficient of 0.75 ± 0.12 and 0.70 ± 0.14 for the placenta and its vessels.
2 citations
Cited by
More filters
TL;DR: CA-Net as mentioned in this paper proposes a joint spatial attention module to make the network focus more on the foreground region and a novel channel attention module is proposed to adaptively recalibrate channel-wise feature responses and highlight the most relevant feature channels.
Abstract: Accurate medical image segmentation is essential for diagnosis and treatment planning of diseases. Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance for automatic medical image segmentation. However, they are still challenged by complicated conditions where the segmentation target has large variations of position, shape and scale, and existing CNNs have a poor explainability that limits their application to clinical decisions. In this work, we make extensive use of multiple attentions in a CNN architecture and propose a comprehensive attention-based CNN (CA-Net) for more accurate and explainable medical image segmentation that is aware of the most important spatial positions, channels and scales at the same time. In particular, we first propose a joint spatial attention module to make the network focus more on the foreground region. Then, a novel channel attention module is proposed to adaptively recalibrate channel-wise feature responses and highlight the most relevant feature channels. Also, we propose a scale attention module implicitly emphasizing the most salient feature maps among multiple scales so that the CNN is adaptive to the size of an object. Extensive experiments on skin lesion segmentation from ISIC 2018 and multi-class segmentation of fetal MRI found that our proposed CA-Net significantly improved the average segmentation Dice score from 87.77% to 92.08% for skin lesion, 84.79% to 87.08% for the placenta and 93.20% to 95.88% for the fetal brain respectively compared with U-Net. It reduced the model size to around 15 times smaller with close or even better accuracy compared with state-of-the-art DeepLabv3+. In addition, it has a much higher explainability than existing networks by visualizing the attention weight maps. Our code is available at https://github.com/HiLab-git/CA-Net .
27 citations
TL;DR: A Deformable SVR (DSVR), a novel approach for non-rigid motion correction of fetal MRI based on a hierarchical deformable S VR scheme to allow high resolution reconstruction of the fetal body and placenta is proposed.
Abstract: In in-utero MRI, motion correction for fetal body and placenta poses a particular challenge due to the presence of local non-rigid transformations of organs caused by bending and stretching. The existing slice-to-volume registration (SVR) reconstruction methods are widely employed for motion correction of fetal brain that undergoes only rigid transformation. However, for reconstruction of fetal body and placenta, rigid registration cannot resolve the issue of misregistrations due to deformable motion, resulting in degradation of features in the reconstructed volume. We propose a Deformable SVR (DSVR), a novel approach for non-rigid motion correction of fetal MRI based on a hierarchical deformable SVR scheme to allow high resolution reconstruction of the fetal body and placenta. Additionally, a robust scheme for structure-based rejection of outliers minimises the impact of registration errors. The improved performance of DSVR in comparison to SVR and patch-to-volume registration (PVR) methods is quantitatively demonstrated in simulated experiments and 20 fetal MRI datasets from 28–31 weeks gestational age (GA) range with varying degree of motion corruption. In addition, we present qualitative evaluation of 100 fetal body cases from 20–34 weeks GA range.
22 citations
TL;DR: This work proposes a novel approach for non-rigid motion correction in 3D volumes based on an extension of the classical SVR method with hierarchical deformable registration scheme and structure-based outlier rejection and allows high resolution reconstruction of the fetal trunk.
Abstract: In in-utero MRI, motion correction for fetal body and placenta poses a particular challenge due to the presence of local non-rigid transformations of organs caused by bending and stretching. The existing slice-to-volume registration (SVR) reconstruction methods are widely employed for motion correction of fetal brain that undergoes only rigid transformation. However, for reconstruction of fetal body and placenta, rigid registration cannot resolve the issue of misregistrations due to deformable motion, resulting in degradation of features in the reconstructed volume. We propose a Deformable SVR (DSVR), a novel approach for non-rigid motion correction of fetal MRI based on a hierarchical deformable SVR scheme to allow high resolution reconstruction of the fetal body and placenta. Additionally, a robust scheme for structure-based rejection of outliers minimises the impact of registration errors. The improved performance of DSVR in comparison to SVR and patch-to-volume registration (PVR) methods is quantitatively demonstrated in simulated experiments and 20 fetal MRI datasets from 28-31 weeks gestational age (GA) range with varying degree of motion corruption. In addition, we present qualitative evaluation of 100 fetal body cases from 20-34 weeks GA range.
16 citations
13 Oct 2019
TL;DR: This work proposes a method to extract the human placenta at late gestation using multi-view 3D US images from different views acquired with a multi-probe system using a novel technique based on 3D convolutional neural networks.
Abstract: We propose a method to extract the human placenta at late gestation using multi-view 3D US images. This is the first step towards automatic quantification of placental volume and morphology from US images along the whole pregnancy beyond early stages (where the entire placenta can be captured with a single 3D US image). Our method uses 3D US images from different views acquired with a multi-probe system. A whole placenta segmentation is obtained from these images by using a novel technique based on 3D convolutional neural networks. We demonstrate the performance of our method on 3D US images of the placenta in the last trimester. We achieve a high Dice overlap of up to 0.8 with respect to manual annotations, and the derived placental volumes are comparable to corresponding volumes extracted from MR.
7 citations
TL;DR: The proposed TTTS fetal surgery planning and simulation platform is integrated into a flexible C++ and MITK-based application to provide a full exploration of the intrauterine environment by simulating the fetoscope camera as well as the laser ablation.
Abstract: Twin-to-twin transfusion syndrome (TTTS) is a serious condition that may occur in pregnancies when two or more fetuses share the same placenta. It is characterized by abnormal vascular connections in the placenta that cause blood to flow unevenly between the babies. If left untreated, perinatal mortality occurs in 90% of cases, whilst neurological injuries are still present in TTTS survivors. Minimally invasive fetoscopic laser surgery is the standard and optimal treatment for this condition, but is technically challenging and can lead to complications. Acquiring and maintaining the required surgical skills need consistent practice, and a steep learning curve. An accurate preoperative planning is thus vital for complex TTTS cases. To this end, we propose the first TTTS fetal surgery planning and simulation platform. The soft tissue of the mother, the uterus, the umbilical cords, the placenta and its vascular tree are segmented and registered automatically from magnetic resonance imaging and 3D ultrasound using computer vision and deep learning techniques. The proposed state-of-the-art technology is integrated into a flexible C++ and MITK-based application to provide a full exploration of the intrauterine environment by simulating the fetoscope camera as well as the laser ablation, determining the correct entry point, training doctors’ movements and trajectory ahead of operation, which allows improving upon current practice. A comprehensive usability study is reported. Experienced surgeons rated highly our TTTS planner and simulator, thus being a potential tool to be implemented in real and complex TTTS surgeries.
7 citations