scispace - formally typeset
Search or ask a question
Author

Jörg Imberger

Bio: Jörg Imberger is an academic researcher from University of Miami. The author has contributed to research in topics: Internal wave & Stratification (water). The author has an hindex of 61, co-authored 286 publications receiving 13195 citations. Previous affiliations of Jörg Imberger include University of Western Australia & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors considered the problem of transient natural convection in a cavity of aspect ratio A [les ] 1 with differentially heated end walls and used scale analysis to show that a number of initial flow types are possible, collapsing ultimately onto two basic types of steady flow, determined by the relative value of the non-dimensional parameters describing the flow.
Abstract: The problem of transient natural convection in a cavity of aspect ratio A [les ] 1 with differentially heated end walls is considered. Scale analysis is used to show that a number of initial flow types are possible, collapsing ultimately onto two basic types of steady flow, determined by the relative value of the non-dimensional parameters describing the flow. A number of numerical solutions which encompass both flow types are obtained, and their relationship to the scale analysis is discussed.

532 citations

Journal ArticleDOI
TL;DR: In this paper, a 3D mixed-layer model for surface dynamics with a semi-implicit method similar to the momentum solution in the TRIM code with the addition of quadratic Euler-Lagrange dis- cretization, scalar transport using a conservative flux-limited approach, and elimination of vertical diffusion terms in the governing equations is presented.
Abstract: Basin-scale internal waves provide the driving forces for vertical and horizontal fluxes in a stratified lake below the wind-mixed layer. Thus, correct modeling of lake mixing and transport requires accurate modeling of basin- scale internal waves: examining this capability with a hydrostatic, z-coordinate three-dimensional (3D) numerical model at coarse grid resolutions is the focus of this paper. It is demonstrated that capturing the correct thermocline forcing with a 3D mixed-layer model for surface dynamics results in a good representation of low-frequency internal wave dynamics. The 3D estuary and lake computer model ELCOM is applied to modeling Lake Kinneret, Israel, and is compared with field data under summer stratification conditions to identify and illustrate the spatial structure of the lowest-mode basin-scale Kelvin and Poincarewaves that provide the largest two peaks in the internal wave energy spectra. The model solves the unsteady Reynolds-averaged Navier-Stokes equations using a semi-implicit method similar to the momentum solution in the TRIM code with the addition of quadratic Euler-Lagrange dis- cretization, scalar (e.g., temperature) transport using a conservative flux-limited approach, and elimination of vertical diffusion terms in the governing equations. A detailed description is provided of turbulence closure for the vertical Reynolds stress terms and vertical turbulent transport using a 3D mixed-layer model parameterized on wind and shear energy fluxes instead of the convential eddy viscosity/diffusivity assumption. This approach gives a good representation of the depth of the mixed-layer at coarse vertical grid resolutions that allows the internal waves to be energized correctly at the basin scale. Wind stresses, surface heating, and density currents form the driving energy fluxes of a stratified lake. The basin-scale energy flux from the wind is of particular interest because of its dominant role in setting the thermocline in motion, which, in the absence of inflows and outflows, is the primary energy store for transport and mixing below the wind-mixed layer. Thus, modeling the basin-scale internal wave behavior is an a priori requirement to modeling and quantifying the flux paths of nutrients in a stratified lake (Imberger 1994). This paper takes a first step in this direction by analyzing our ability to model basin-scale internal waves that are seen in Lake Kinneret, Israel. Energy flux path in a stratified lake —Energy flux through a stratified lake has a fundamental dependence on forced and free baroclinic motions. The wind imparts both momentum and turbulent kinetic energy (TKE) to the water in the sur- face layer. The TKE distributes momentum vertically in the

409 citations

Journal ArticleDOI
TL;DR: The Richardson number as mentioned in this paper is defined as the ratio of the turbulent buoyancy flux b to the net turbulent mechanical energy m available from all sources, and it is quantitatively determined by the location of the event in the FrT, ReT where FrT and ReT are the local instantaneous overturn Froude number and Reynolds number.
Abstract: The definition of the flux Richardson number Rf is generalized to be the ratio of the turbulent buoyancy flux b to the net turbulent mechanical energy m available from all sources. For mechanically energized turbulence where turbulence kinetic energy is used to sustain an upward buoyancy flux (b > 0), it is shown the magnitude of Rf is quantitatively determined by the location of the event in the FrT,–ReT where FrT and –ReT are the local instantaneous overturn Froude number and Reynolds number. In this parameter space the value of Rf varies between 0 and 0.20 for a fluid with Prandtl number greater than one, and between 0 and 0.15 for a fluid with a Prandtl number less than one. For turbulence sustained by a negative buoyancy flux (b < 0), such as penetrative convection in a cooling surface layer, it is shown that the flux Richardson number Rf is a fraction of depth below the surface Rf−1 varies between 0.55 at the surface and –∞ towards the base of the surface layer where the buoyancy flux vanis...

388 citations

Journal ArticleDOI

376 citations

Book ChapterDOI
01 Jan 1981

347 citations


Cited by
More filters
Journal ArticleDOI
Leon Cohen1
01 Jul 1989
TL;DR: A review and tutorial of the fundamental ideas and methods of joint time-frequency distributions is presented with emphasis on the diversity of concepts and motivations that have gone into the formation of the field.
Abstract: A review and tutorial of the fundamental ideas and methods of joint time-frequency distributions is presented. The objective of the field is to describe how the spectral content of a signal changes in time and to develop the physical and mathematical ideas needed to understand what a time-varying spectrum is. The basic gal is to devise a distribution that represents the energy or intensity of a signal simultaneously in time and frequency. Although the basic notions have been developing steadily over the last 40 years, there have recently been significant advances. This review is intended to be understandable to the nonspecialist with emphasis on the diversity of concepts and motivations that have gone into the formation of the field. >

3,568 citations

Journal ArticleDOI
TL;DR: To the best of our knowledge, there is only one application of mathematical modelling to face recognition as mentioned in this paper, and it is a face recognition problem that scarcely clamoured for attention before the computer age but, having surfaced, has attracted the attention of some fine minds.
Abstract: to be done in this area. Face recognition is a problem that scarcely clamoured for attention before the computer age but, having surfaced, has involved a wide range of techniques and has attracted the attention of some fine minds (David Mumford was a Fields Medallist in 1974). This singular application of mathematical modelling to a messy applied problem of obvious utility and importance but with no unique solution is a pretty one to share with students: perhaps, returning to the source of our opening quotation, we may invert Duncan's earlier observation, 'There is an art to find the mind's construction in the face!'.

3,015 citations

Book
29 May 2006
TL;DR: Reynolds as discussed by the authors provides basic information on composition, morphology and physiology of the main phyletic groups represented in marine and freshwater systems and reviews recent advances in community ecology, developing an appreciation of assembly processes, co-existence and competition, disturbance and diversity.
Abstract: Communities of microscopic plant life, or phytoplankton, dominate the Earth's aquatic ecosystems. This important new book by Colin Reynolds covers the adaptations, physiology and population dynamics of phytoplankton communities in lakes and rivers and oceans. It provides basic information on composition, morphology and physiology of the main phyletic groups represented in marine and freshwater systems and in addition reviews recent advances in community ecology, developing an appreciation of assembly processes, co-existence and competition, disturbance and diversity. Although focussed on one group of organisms, the book develops many concepts relevant to ecology in the broadest sense, and as such will appeal to graduate students and researchers in ecology, limnology and oceanography.

1,856 citations

Journal ArticleDOI
TL;DR: A tutorial review of both linear and quadratic representations is given, and examples of the application of these representations to typical problems encountered in time-varying signal processing are provided.
Abstract: A tutorial review of both linear and quadratic representations is given. The linear representations discussed are the short-time Fourier transform and the wavelet transform. The discussion of quadratic representations concentrates on the Wigner distribution, the ambiguity function, smoothed versions of the Wigner distribution, and various classes of quadratic time-frequency representations. Examples of the application of these representations to typical problems encountered in time-varying signal processing are provided. >

1,587 citations

Journal ArticleDOI
TL;DR: A revised version of the elementary effects method is proposed, improved in terms of both the definition of the measure and the sampling strategy, having the advantage of a lower computational cost.
Abstract: In 1991 Morris proposed an effective screening sensitivity measure to identify the few important factors in models with many factors. The method is based on computing for each input a number of incremental ratios, namely elementary effects, which are then averaged to assess the overall importance of the input. Despite its value, the method is still rarely used and instead local analyses varying one factor at a time around a baseline point are usually employed. In this piece of work we propose a revised version of the elementary effects method, improved in terms of both the definition of the measure and the sampling strategy. In the present form the method shares many of the positive qualities of the variance-based techniques, having the advantage of a lower computational cost, as demonstrated by the analytical examples. The method is employed to assess the sensitivity of a chemical reaction model for dimethylsulphide (DMS), a gas involved in climate change. Results of the sensitivity analysis open up the ground for model reconsideration: some model components may need a more thorough modelling effort while some others may need to be simplified.

1,528 citations