scispace - formally typeset
Search or ask a question
Author

Jörg Peter Kutter

Bio: Jörg Peter Kutter is an academic researcher from University of Copenhagen. The author has contributed to research in topics: Capillary electrophoresis & Microchannel. The author has an hindex of 47, co-authored 181 publications receiving 7179 citations. Previous affiliations of Jörg Peter Kutter include Oak Ridge National Laboratory & University of Ulm.


Papers
More filters
Journal ArticleDOI
TL;DR: Several bonding methods for microstructured PMMA [poly(methyl methacrylate)] parts were investigated, such as solvent-assisted glueing, melting, laminating and surface activation using a plasma asher.
Abstract: In this article, we focus on the enormous potential of a CO2-laser system for rapidly producing polymer microfluidic structures. The dependence was assessed of the depth and width of laser-cut channels on the laser beam power and on the number of passes of the beam along the same channel. In the experiments the laser beam power was varied between 0 and 40 W and the passes were varied in the range of 1 to 7 times. Typical channel depths were between 100 and 300 μm, while the channels were typically 250 μm wide. The narrowest produced channel was 85 μm wide. Several bonding methods for microstructured PMMA [poly(methyl methacrylate)] parts were investigated, such as solvent-assisted glueing, melting, laminating and surface activation using a plasma asher. A solvent-assisted thermal bonding method proved to be the most time-efficient one. Using laser micromachining together with bonding, a three-layer polymer microstructure with included optical fibers was fabricated within two days. The use of CO2-laser systems to produce microfluidic systems has not been published before. These systems provide a cost effective alternative to UV-laser systems and they are especially useful in microfluidic prototyping due to the very short cycle time of production.

499 citations

Journal ArticleDOI
TL;DR: This study presents a new pressure-driven microfabricated fluorescent-activated cell sorter chip with advanced functional integration, and develops a monolithically integrated single step coaxial flow compound for hydrodynamic focusing of samples in flow cytometry and cell sorting.
Abstract: The integration of complete analyses systems "on chip" is one of the great potentials of microfabricated devices. In this study we present a new pressure-driven microfabricated fluorescent-activated cell sorter chip with advanced functional integration. Using this sorter, fluorescent latex beads are sorted from chicken red blood cells, achieving substantial enrichments at a sample throughput of 12000 cells s(-1). As a part of the sorter chip, we have developed a monolithically integrated single step coaxial flow compound for hydrodynamic focusing of samples in flow cytometry and cell sorting. The structure is simple, and can easily be microfabricated and integrated with other microfluidic components. We have designed an integrated chamber on the chip for holding and culturing of the sorted cells. By integrating this chamber, the risk of losing cells during cell handling processes is eliminated. Furthermore, we have also developed integrated optics for cell detection. Our new design contributes to the ongoing efforts for building a fully integrated micro cell sorting and analysing system.

415 citations

Journal ArticleDOI
TL;DR: A detailed description of the properties of COPs, the available fabrication methods and several selected applications described in the literature can be found in this paper, where the authors also present a detailed analysis of the applications of COP materials.
Abstract: Cyclic olefin polymers (COPs) are increasingly popular as substrate material for microfluidics. This is due to their promising properties, such as high chemical resistance, low water absorption, good optical transparency in the near UV range and ease of fabrication. COPs are commercially available from a range of manufacturers under various brand names (Apel, Arton, Topas, Zeonex and Zeonor). Some of these (Apel and Topas) are made from more than one kind of monomer and therefore also known as cyclic olefin copolymers (COCs). In order to structure these materials, a wide array of fabrication methods is available. Laser ablation and micromilling are direct structuring methods suitable for fast prototyping, whilst injection moulding, hot embossing and nanoimprint lithography are replication methods more appropriate for low-cost production. Using these fabrication methods, a multitude of chemical analysis techniques have already been implemented. These include microchip electrophoresis (MCE), chromatography, solid phase extraction (SPE), isoelectric focusing (IEF) and mass spectrometry (MS). Still much additional work is needed to characterise and utilise the full potential of COP materials. This is especially true within optofluidics, where COPs are still rarely used, despite their excellent optical properties. This review presents a detailed description of the properties of COPs, the available fabrication methods and several selected applications described in the literature.

347 citations

Journal ArticleDOI
TL;DR: This review concentrates on the latest developments of optical detection methods and mass spectrometry in conjunction with microfluidic systems and focuses on electrospray emitters as interfaces between microsystem and spectrometer.
Abstract: Microfluidic systems have become more and more important in the field of analytical chemistry. Detection methods on these microsystems are essential for the identification and quantification of chemical species that are being analyzed. This review concentrates on the latest developments of optical detection methods and mass spectrometry in conjunction with microfluidic systems. Electrochemical methods are discussed in another review in the same issue of this journal. Within the optical detection section, topics such as multiplexed detection and the use of waveguides are discussed. Within the discussion of mass spectrometry, the main focus is on electrospray emitters as interfaces between microsystem and spectrometer. Apart from optical detection and mass spectrometry, other techniques such as flame ionization and nuclear magnetic resonance are also mentioned.

234 citations

Journal ArticleDOI
TL;DR: This work presents a feasibility study of a lab-on-a-chip system with five different components monolithically integrated on one substrate, the first time that integration of all these components has been demonstrated.
Abstract: Taking the next step from individual functional components to higher integrated devices, we present a feasibility study of a lab-on-a-chip system with five different components monolithically integrated on one substrate. These five components represent three main domains of microchip technology: optics, fluidics and electronics. In particular, this device includes an on-chip optically pumped liquid dye laser, waveguides and fluidic channels with passive diffusive mixers, all defined in one layer of SU-8 polymer, as well as embedded photodiodes in the silicon substrate. The dye laser emits light at 576 nm, which is directly coupled into five waveguides that bring the light to five different locations along a fluidic channel for absorbance measurements. The transmitted portion of the light is collected at the other side of this cuvette, again by waveguides, and finally detected by the photodiodes. Electrical read-out is accomplished by integrated metal connectors. To our knowledge, this is the first time that integration of all these components has been demonstrated.

226 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: Fabrication of microfluidic devices in poly(dimethylsiloxane) (PDMS) by soft lithography provides faster, less expensive routes to devices that handle aqueous solutions.
Abstract: Microfluidic devices are finding increasing application as analytical systems, biomedical devices, tools for chemistry and biochemistry, and systems for fundamental research. Conventional methods of fabricating microfluidic devices have centered on etching in glass and silicon. Fabrication of microfluidic devices in poly(dimethylsiloxane) (PDMS) by soft lithography provides faster, less expensive routes than these conventional methods to devices that handle aqueous solutions. These soft-lithographic methods are based on rapid prototyping and replica molding and are more accessible to chemists and biologists working under benchtop conditions than are the microelectronics-derived methods because, in soft lithography, devices do not need to be fabricated in a cleanroom. This paper describes devices fabricated in PDMS for separations, patterning of biological and nonbiological material, and components for integrated systems.

3,344 citations

01 May 2005

2,648 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the book.http://www.reviewreviews.com/reviews/book-reviews-of-the-book
Abstract: Review

2,157 citations

Journal ArticleDOI
27 Jul 2006-Nature
TL;DR: Highly integrated microdevices show great promise for basic biomedical and pharmaceutical research, and robust and portable point-of-care devices could be used in clinical settings, in both the developed and the developing world.
Abstract: Microsystems create new opportunities for the spatial and temporal control of cell growth and stimuli by combining surfaces that mimic complex biochemistries and geometries of the extracellular matrix with microfluidic channels that regulate transport of fluids and soluble factors. Further integration with bioanalytic microsystems results in multifunctional platforms for basic biological insights into cells and tissues, as well as for cell-based sensors with biochemical, biomedical and environmental functions. Highly integrated microdevices show great promise for basic biomedical and pharmaceutical research, and robust and portable point-of-care devices could be used in clinical settings, in both the developed and the developing world.

2,082 citations