scispace - formally typeset
Search or ask a question
Author

Jorge A. Gutierrez

Bio: Jorge A. Gutierrez is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Finite element method & Letter to the editor. The author has an hindex of 2, co-authored 5 publications receiving 218 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an efficient method based on the Ritz concept for dynamic analysis of multistorey buildings including foundation interaction to earthquake ground motion is presented, where structural displacements are transformed to normal modes of vibration of the building on a rigid foundation.
Abstract: An efficient method, based on the Ritz concept, for dynamic analysis of response of multistorey buildings including foundation interaction to earthquake ground motion is presented. The system considered is a shear building on a rigid circular disc footing attached to the surface of a linearly elastic halfspace. In this method, the structural displacements are transformed to normal modes of vibration of the building on a rigid foundation. The analysis procedure is developed and numerical results are presented to demonstrate that excellent results can be obtained by considering only the first few modes of vibration. As the number of unknowns are reduced by transforming to generalized co-ordinates, the method presented is much more efficient than direct methods.

140 citations

Journal ArticleDOI
TL;DR: In this paper, a general substructure method for analysis of structures to earthquake ground motion, including the effects of structure-soil interaction, is presented, which is applicable to complex structures idealized as finite element systems and the soil region treated as either a continuum, for example as a viscoelastic halfspace, or idealised as a finite element system.
Abstract: A general substructure method for analysis of response of structures to earthquake ground motion, including the effects of structure-soil interaction, is presented. The method is applicable to complex structures idealized as finite element systems and the soil region treated as either a continuum, for example as a viscoelastic halfspace, or idealized as a finite element system. The halfspace idealization permits reliable analysis for sites where essentially similar soils extend to large depths and there is no rigid boundary such as soil-rock interface. For sites where layers of soft soil are underlain by rock at shallow depth, finite element idealization of the soil region is appropriate; in this case, the direct and substructure methods would lead to equivalent results but the latter provides the better alternative. Treating the free field motion directly as the earthquake input in the substructure method eliminates the deconvolution calculations and the related assumption—regarding type and direction of earthquake waves—required in the direct method. Spatial variations in the input motion along the structure-soil interface of embedded structures or along the base of long surface supported structures are included in the formulation. The substructure method is computationally efficient because the two substructures—the structure and the soil region—are analysed separately; and, more important, it permits taking advantage of the important feature that response to earthquake ground motion is essentially contained in the lower few natural modes of vibration of the structure on fixed base.

101 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a systematic summary of the history and status of the structure-soil-structure dynamic interaction research that considers adjacent structures was proposed as a reference for researchers.

217 citations

Journal ArticleDOI
TL;DR: In this paper, the dynamic response of three-dimensional rigid surface foundations of arbitrary shape is numerically obtained by placing the foundations on a linear elastic, isotropic and homogeneous half-space representing the soil medium and are subjected to either external dynamic forces or seismic waves of various kinds and directions.
Abstract: The dynamic response of three-dimensional rigid surface foundations of arbitrary shape is numerically obtained. The foundations are placed on a linear elastic, isotropic and homogeneous half-space representing the soil medium and are subjected to either external dynamic forces or seismic waves of various kinds and directions, with a general transient time variation. The problem is formulated in the time domain by the boundary element method and the response is obtained by a time step-by-step integration. Two examples dealing with three-dimensional rectangular foundations are presented in detail, together with comparisons with other methods, in order to document the accuracy of the method. The main advantages of the proposed method are that, unlike frequency domain techniques, it provides directly the transient response and forms the basis for extension to the case of non-linear behaviour.

177 citations

Journal ArticleDOI
TL;DR: In this paper, the frequency-dependent transmissibility function amplitude uHu was used to estimate free-field ground motions to estimate base slab motions for response analyses of buildings with surface and shallowly embedded foundations.
Abstract: Earthquake strong motion recordings from 29 sites with instrumented structures and free-field accelerographs are used to evaluate variations between foundation-level and free-field ground motions. The focus of the paper is on buildings with surface and shallowly embedded foundations. The foundation/free-field ground motion variations are quantified in terms of frequency-dependent transmissibility function amplitude uHu. Procedures are developed to fit to uHu analytical models for base slab averaging for the assumed conditions of a rigid base slab and a vertically propagating, incoherent incident wave field characterized by ground motion incoherence parameter k. The limiting assumptions of the model are not strictly satisfied for actual structures, and the results of the identification are apparent k values ~denoted k a) that reflect not only incoherence effects, but also possible foundation flexibility and wave inclination effects. Nonetheless, a good correlation is found between k a values and soil shear wave velocity for sites with stiff foundation systems. Based on these results, recommendations are made for modifying free-field ground motions to estimate base slab motions for use in response analyses of buildings.

142 citations

Journal ArticleDOI
TL;DR: In this article, a general procedure for analysis of the response of concrete gravity dams, including the dynamic effects of impounded water and flexible foundation rock, to the transverse (horizontal) and vertical components of earthquake ground motion is presented.
Abstract: A general procedure for analysis of the response of concrete gravity dams, including the dynamic effects of impounded water and flexible foundation rock, to the transverse (horizontal) and vertical components of earthquake ground motion is presented. The problem is reduced to one in two dimensions, considering the transverse vibration of a monolith of the dam. The system is analysed under the assumption of linear behaviour for the concrete, foundation rock and water. The complete system is considered as composed of three substructures—the dam, represented as a finite element system, the fluid domain, as a continuum of infinite length in the upstream direction, and the foundation rock region as a viscoelastic half-plane. The structural displacements of the dam are expressed as a linear combination of Ritz vectors, chosen as normal modes of an associated undamped dam-rock system. The effectiveness of this analytical formulation lies in its being able to produce excellent results by considering only a few Ritz vectors. The generalized displacements due to earthquake motion are computed by synthesizing their complex frequency responses using Fast Fourier Transform procedures. The stress responses are calculated from the displacements. An example analysis is presented to illustrate results obtained from this analytical procedure. Computation times for several analyses are presented to illustrate the effectiveness of the procedure.

140 citations