scispace - formally typeset
Search or ask a question
Author

Jorge Echeverría

Bio: Jorge Echeverría is an academic researcher from University of Barcelona. The author has contributed to research in topics: Non-covalent interactions & Lewis acids and bases. The author has an hindex of 19, co-authored 50 publications receiving 3619 citations. Previous affiliations of Jorge Echeverría include Centre national de la recherche scientifique & Alstom.


Papers
More filters
Journal ArticleDOI
TL;DR: A new set of covalent atomic radii has been deduced from crystallographic data for most of the elements with atomic numbers up to 96 and shows a well behaved periodic dependence that allows us to interpolate a few radii for elements for which structural data is lacking.
Abstract: A new set of covalent atomic radii has been deduced from crystallographic data for most of the elements with atomic numbers up to 96. The proposed radii show a well behaved periodic dependence that allows us to interpolate a few radii for elements for which structural data is lacking, notably the noble gases. The proposed set of radii therefore fills most of the gaps and solves some inconsistencies in currently used covalent radii. The transition metal and lanthanide contractions as well as the differences in covalent atomic radii between low spin and high spin configurations in transition metals are illustrated by the proposed radii set.

2,948 citations

Journal ArticleDOI
TL;DR: It is shown that a stand-alone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or anticlockwise direction by selective inelastic electron tunnelling through different subunits of the motor.
Abstract: A molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or anticlockwise direction by selective inelastic electron tunnelling through different subunits of the motor.

226 citations

Journal ArticleDOI
TL;DR: A systematic computational study of intermolecular interactions in dimers of n-alkanes and polyhedranes showed that attractive C–H···H–C interactions are stronger than usually thought.
Abstract: Alkane molecules are held together in the crystal state by purportedly weak homonuclear R–H···H–R dihydrogen interactions. In an apparent contradiction, the high melting points and vaporization enthalpies of polyhedranes in condensed phases require quite strong intermolecular interactions. Two questions arise: ‘How strong can a weak C–H···H–C bond be?’ and ‘How do the size and topology of the carbon skeleton affect these bonding interactions?’ A systematic computational study of intermolecular interactions in dimers of n-alkanes and polyhedranes, such as tetrahedrane, cubane, octahedrane or dodecahedrane, showed that attractive C–H···H–C interactions are stronger than usually thought. We identified factors that account for the strength of these interactions, including the tertiary nature of the carbon atoms and their low pyramidality. An alkane with a bowl shape was designed in the search for stronger dihydrogen intermolecular bonding, and a dissociation energy as high as 12 kJ mol−1 is predicted by our calculations. Intermolecular non-polar H···H interactions between polyhedrane molecules may be as attractive as classical hydrogen bonds. A theoretical study identifies the chemical and structural factors that favour such attractive interactions.

218 citations

Journal ArticleDOI
TL;DR: A valence bond (VB) model was developed and applied to analyze the H···H interactions in dimers of H2 and alkanes and revealed two distinct mechanisms of "dispersion."
Abstract: To understand the dispersion stabilization of hydrocarbons in solids and of encumbered molecules, wherein CH···HC interactions act as sticky fingers, we developed here a valence bond (VB) model and applied it to analyze the H···H interactions in dimers of H2 and alkanes. The VB analysis revealed two distinct mechanisms of “dispersion.” In the dimers of small molecules like H–H···H–H and H3CH···HCH3, the stabilization arises primarily due to the increased importance of the VB structures which possess charge alternation, e.g., C+H–···H+C– and C–H+···H–C+, and hence bring about electrostatic stabilization that holds the dimer. This is consistent with the classical mechanism of oscillating dipoles as the source of dispersion interactions. However, in larger alkanes, this mechanism is insufficient to glue the two molecules together. Here, the “dispersion” interaction comes about through perturbational mixing of VB structures, which reorganize the bonding electrons of the two interacting CH bonds via recoupling...

102 citations

Journal ArticleDOI
TL;DR: It is shown that a two-dimensional array of dipolar molecular rotors can undergo simultaneous rotational switching when applying an electric field from the tip of a scanning tunnelling microscope.
Abstract: A range of artificial molecular systems has been created that can exhibit controlled linear and rotational motion. In the further development of such systems, a key step is the addition of communication between molecules in a network. Here, we show that a two-dimensional array of dipolar molecular rotors can undergo simultaneous rotational switching when applying an electric field from the tip of a scanning tunnelling microscope. Several hundred rotors made from porphyrin-based double-decker complexes can be simultaneously rotated when in a hexagonal rotor network on a Cu(111) surface by applying biases above 1 V at 80 K. The phenomenon is observed only in a hexagonal rotor network due to the degeneracy of the ground-state dipole rotational energy barrier of the system. Defects are essential to increase electric torque on the rotor network and to stabilize the switched rotor domains. At low biases and low initial rotator angles, slight reorientations of individual rotors can occur, resulting in the rotator arms pointing in different directions. Analysis reveals that the rotator arm directions are not random, but are coordinated to minimize energy via crosstalk among the rotors through dipolar interactions. Hundreds of molecular rotors in a 2D network can be simultaneously rotated by applying an electric field from the tip of a scanning tunnelling microscope.

82 citations


Cited by
More filters
01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
TL;DR: A self-consistent system of additive covalent radii, R(AB)=r(A) + r(B), is set up for the entire periodic table, Groups 1-18, Z=1-118, and is close to the methyl-based one of Suresh and Koga and its predecessors.
Abstract: A self-consistent system of additive covalent radii, R(AB)=r(A) + r(B), is set up for the entire periodic table, Groups 1-18, Z=1-118. The primary bond lengths, R, are taken from experimental or theoretical data corresponding to chosen group valencies. All r(E) values are obtained from the same fit. Both E-E, E-H, and E-CH 3 data are incorporated for most elements, E. Many E-E' data inside the same group are included. For the late main groups, the system is close to that of Pauling. For other elements it is close to the methyl-based one of Suresh and Koga [J. Phys. Chem. A 2001, 105, 5940] and its predecessors. For the diatomic alkalis MM' and halides XX', separate fits give a very high accuracy. These primary data are then absorbed with the rest. The most notable exclusion are the transition-metal halides and chalcogenides which are regarded as partial multiple bonds. Other anomalies include H 2 and F 2 . The standard deviation for the 410 included data points is 2.8 pm.

1,585 citations

Journal ArticleDOI
15 May 2014-Nature
TL;DR: Some of the most recent and significant developments in homogeneous nickel catalysis are discussed, with an emphasis on both synthetic outcome and mechanism.
Abstract: Tremendous advances have been made in nickel catalysis over the past decade Several key properties of nickel, such as facile oxidative addition and ready access to multiple oxidation states, have allowed the development of a broad range of innovative reactions In recent years, these properties have been increasingly understood and used to perform transformations long considered exceptionally challenging Here we discuss some of the most recent and significant developments in homogeneous nickel catalysis, with an emphasis on both synthetic outcome and mechanism

1,487 citations

Journal ArticleDOI
TL;DR: The response of the worldwide scientific community to the discovery in 2008 of superconductivity at T c'='26'K in the Fe-based compound LaFeAsO1−x F x has been very enthusiastic.
Abstract: The response of the worldwide scientific community to the discovery in 2008 of superconductivity at T c = 26 K in the Fe-based compound LaFeAsO1−x F x has been very enthusiastic. In short order, ot...

1,373 citations