scispace - formally typeset
Search or ask a question
Author

Jorge F. J. Coelho

Bio: Jorge F. J. Coelho is an academic researcher from University of Coimbra. The author has contributed to research in topics: Atom-transfer radical-polymerization & Polymerization. The author has an hindex of 40, co-authored 198 publications receiving 6007 citations. Previous affiliations of Jorge F. J. Coelho include Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa & Carnegie Mellon University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the literature on 2,5-furandicarboxylic acid derived polymers is presented, covering recent aspects related with challenges in developing polyesters, polyamides and their precursors.

490 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent aspects related to the most promising renewable-based polyesters is presented, focusing on bio-based monomers that, given their comparable properties, may replace polymers derived from fossil fuel feedstock.

408 citations

Journal ArticleDOI
TL;DR: The recent advances reported in the literature that could provide new avenues to the development of more efficient adhesives inspired in nature strategies are discussed.

290 citations

Book
01 Jan 2013
TL;DR: General concepts and emerging research in this field based on multidisciplinary approaches aimed at creating personalized treatment for a broad range of highly prevalent diseases (e.g., cancer and diabetes) are described.
Abstract: Advanced drug delivery systems (DDS) present indubitable benefits for drug administration. Over the past three decades, new approaches have been suggested for the development of novel carriers for drug delivery. In this review, we describe general concepts and emerging research in this field based on multidisciplinary approaches aimed at creating personalized treatment for a broad range of highly prevalent diseases (e.g., cancer and diabetes). This review is composed of two parts. The first part provides an overview on currently available drug delivery technologies including a brief history on the development of these systems and some of the research strategies applied. The second part provides information about the most advanced drug delivery devices using stimuli-responsive polymers. Their synthesis using controlled-living radical polymerization strategy is described. In a near future it is predictable the appearance of new effective tailor-made DDS, resulting from knowledge of different interdisciplinary sciences, in a perspective of creating personalized medical solutions.

281 citations

Journal ArticleDOI
TL;DR: This pharmaceutical form with a blustering beginning as a breath freshener had an emergent entrance in the Rx market proving its reliable value, and is described and explores the oral film technology from its main component, the polymeric matrices, to the new and possible market applications.

206 citations


Cited by
More filters
01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations

Journal ArticleDOI
TL;DR: The requirement for formulations with improved properties for effective and accurate delivery of the required therapeutic agents and general formulation approaches towards achieving optimum physical properties and controlled delivery characteristics for an active wound healing dosage form are considered.

2,302 citations

Journal ArticleDOI
TL;DR: The current status and future perspectives in atom transfer radical polymerization (ATRP) are presented in this paper, with a special emphasis on mechanistic understanding of ATRP, recent synthetic and process development, and new controlled polymer architectures enabled by ATRP.
Abstract: Current status and future perspectives in atom transfer radical polymerization (ATRP) are presented. Special emphasis is placed on mechanistic understanding of ATRP, recent synthetic and process development, and new controlled polymer architectures enabled by ATRP. New hybrid materials based on organic/inorganic systems and natural/synthetic polymers are presented. Some current and forthcoming applications are described.

2,188 citations

Journal ArticleDOI
TL;DR: Advances in nanoparticle design that overcome heterogeneous barriers to delivery are discussed, arguing that intelligent nanoparticles design can improve efficacy in general delivery applications while enabling tailored designs for precision applications, thereby ultimately improving patient outcome overall.
Abstract: In recent years, the development of nanoparticles has expanded into a broad range of clinical applications. Nanoparticles have been developed to overcome the limitations of free therapeutics and navigate biological barriers - systemic, microenvironmental and cellular - that are heterogeneous across patient populations and diseases. Overcoming this patient heterogeneity has also been accomplished through precision therapeutics, in which personalized interventions have enhanced therapeutic efficacy. However, nanoparticle development continues to focus on optimizing delivery platforms with a one-size-fits-all solution. As lipid-based, polymeric and inorganic nanoparticles are engineered in increasingly specified ways, they can begin to be optimized for drug delivery in a more personalized manner, entering the era of precision medicine. In this Review, we discuss advanced nanoparticle designs utilized in both non-personalized and precision applications that could be applied to improve precision therapies. We focus on advances in nanoparticle design that overcome heterogeneous barriers to delivery, arguing that intelligent nanoparticle design can improve efficacy in general delivery applications while enabling tailored designs for precision applications, thereby ultimately improving patient outcome overall.

2,179 citations

Journal ArticleDOI
TL;DR: Catalytic Solvents: Catalyst Disproportionation 4981 2.2.1.
Abstract: 2.1.6. Tacticity and Sequence: Advanced Control 4967 2.2. Transition Metal Catalysts 4967 2.2.1. Overviews of Catalysts 4967 2.2.2. Ruthenium 4967 2.2.3. Copper 4971 2.2.4. Iron 4971 2.2.5. Nickel 4975 2.2.6. Molybdenum 4975 2.2.7. Manganese 4976 2.2.8. Osmium 4976 2.2.9. Cobalt 4976 2.2.10. Other Metals 4976 2.3. Cocatalysts (Additives) 4977 2.3.1. Overview of Cocatalysts 4977 2.3.2. Reducing Agents 4977 2.3.3. Free Radical Initiators 4977 2.3.4. Metal Alkoxides 4977 2.3.5. Amines 4978 2.3.6. Halogen Source 4978 2.4. Initiators 4978 2.4.1. Overview of Initiators: Scope and Design 4978 2.4.2. Alkyl Halides 4978 2.4.3. Arenesulfonyl Halides 4979 2.4.4. N-Chloro Compounds 4979 2.4.5. Halogen-Free Initiators 4979 2.5. Solvents 4980 2.5.1. Overview of Solvents 4980 2.5.2. Catalyst Solubility and Coordination of Solvent 4981 2.5.3. Environmentally Friendly Solvents 4981 2.5.4. Water 4981 2.5.5. Catalytic Solvents: Catalyst Disproportionation 4981

1,131 citations