scispace - formally typeset
Search or ask a question
Author

Jorge Gárate

Bio: Jorge Gárate is an academic researcher from University of Cádiz. The author has contributed to research in topics: Tide gauge & Altimeter. The author has an hindex of 9, co-authored 19 publications receiving 338 citations. Previous affiliations of Jorge Gárate include Royal Institute and Observatory of the Spanish Navy.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, GPS observations in Morocco and adjacent areas of Spain from 15 continuous (CGPS) and 31 survey-mode (SGPS) sites extending from the stable part of the Nubian plate to central Spain were used to constrain models for the Iberia-Nubia plate boundary.

114 citations

Journal ArticleDOI
TL;DR: In this article, a Global Positioning System (GPS) derived horizontal crustal deformation obtained from five occupations of the CuaTeNeo GPS network (1997, 2002, 2006, 2009 and 2011) is presented.

69 citations

Journal ArticleDOI
TL;DR: In this article, a velocity field based on the analysis of the 4 years of data from 25 stations constituting the network, which were analyzed by three different analysis groups contributing to the project, was presented.
Abstract: A new continuous GPS network was installed under the umbrella of a research project called "Geociencias en Iberia: Estudios integrados de topografia y evolucion 4D (Topo-Iberia)", to improve understanding of kinematic behavior of the Iberian Peninsula region. Here we present a velocity field based on the analysis of the 4 years of data from 25 stations constituting the network, which were analyzed by three different analysis groups contributing to the project. Different geodetic software packages (GIPSY---OASIS, Bernese and GAMIT) as well as different approaches were used to estimate rates of present day crustal deformation in the Iberian Peninsula and Morocco. In order to ensure the consistency of the velocity fields determined by the three groups, the velocities obtained by each analysis center were transformed into a common Eurasia Reference Frame. After that, the strain rate field was calculated. The results put in evidence more prominent residual motions in Morocco and southernmost part of the Iberian Peninsula. In particular, the dilatation and shear strain rates reach their maximum values in the Central Betics and northern Alboran Sea. A small region of high shear strain rate is observed in the east-central part of the peninsula and another deformation focus is located around the Strait of Gibraltar and the Gulf of Cadiz.

36 citations

Journal ArticleDOI
TL;DR: In this article, a combined solution for the European Union SEa Level Fluctuations (SELF) I and the SELF II Projects designed to study sea level variations around the Mediterranean and Black Seas, the Global Positioning System (GPS) technique was adopted to measure the ongoing crustal movements at tide gauge stations.

35 citations

Journal ArticleDOI
TL;DR: MAGIC (Meteorological Applications of GPS Integrated Column Water Vapor Measurements in the Western Mediterranean) is a 3 year project for research on deriving and validating robust GPS integrated water vapor and zenith tropospheric delay data sets and developing methods to assimilate the data into numerical weather prediction models and test their impact.
Abstract: MAGIC (Meteorological Applications of GPS Integrated Column Water Vapor Measurements in the Western Mediterranean) is a 3 year project financed in part by the European Commission for research on deriving and validating robust GPS integrated water vapor (IWV) and zenith tropospheric delay (ZTD) data sets and developing methods to assimilate the data into numerical weather prediction models (NWP) and test their impact. It was conceived independently from the COST 716 action, which seeks to coordinate research in the domain at an international scale, but addresses some of the same objectives. This has led to a productive cooperation between the two initiatives and their participants, and motivated the decision of MAGIC participants to provide research results as part of the COST demonstration system. Currently a database of 1.5 years of ZTD data are available on the MAGIC web site which has been validated through comparisons with radiosondes which gives differences with a standard deviation of 10 mm ZTD or the equivalent error in IWV of 1.6 kg/m2. NWP assimilation tests will be carried out in the final year of the project.

31 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Global Strain Rate Model (GSRM v.2.1) as mentioned in this paper is a new global model of plate motions and strain rates in plate boundary zones constrained by horizontal geodetic velocities.
Abstract: We present a new global model of plate motions and strain rates in plate boundary zones constrained by horizontal geodetic velocities. This Global Strain Rate Model (GSRM v.2.1) is a vast improvement over its predecessor both in terms of amount of data input as in an increase in spatial model resolution by factor of ∼2.5 in areas with dense data coverage. We determined 6739 velocities from time series of (mostly) continuous GPS measurements; i.e., by far the largest global velocity solution to date. We transformed 15,772 velocities from 233 (mostly) published studies onto our core solution to obtain 22,511 velocities in the same reference frame. Care is taken to not use velocities from stations (or time periods) that are affected by transient phenomena; i.e., this data set consists of velocities best representing the interseismic plate velocity. About 14% of the Earth is allowed to deform in 145,086 deforming grid cells (0.25° longitude by 0.2° latitude in dimension). The remainder of the Earth's surface is modeled as rigid spherical caps representing 50 tectonic plates. For 36 plates we present new GPS-derived angular velocities. For all the plates that can be compared with the most recent geologic plate motion model, we find that the difference in angular velocity is significant. The rigid-body rotations are used as boundary conditions in the strain rate calculations. The strain rate field is modeled using the Haines and Holt method, which uses splines to obtain an self-consistent interpolated velocity gradient tensor field, from which strain rates, vorticity rates, and expected velocities are derived. We also present expected faulting orientations in areas with significant vorticity, and update the no-net rotation reference frame associated with our global velocity gradient field. Finally, we present a global map of recurrence times for Mw=7.5 characteristic earthquakes.

608 citations

Journal ArticleDOI
TL;DR: In this article, a geodetic horizontal velocity field consistent at the scale of the Mediterranean and the surrounding Alpine belts is derived to discuss the boundary conditions around each major deforming area in the Mediterranean, to describe the main patterns of motion and deformation, to critically review the existing kinematics models and to finally point out the main unresolved kinematic questions.

365 citations

Journal ArticleDOI
TL;DR: In this paper, the authors use 2.5 to 14 years long position time series from >800 continuous Global Positioning System (GPS) stations to study vertical deformation rates in the Euro-Mediterranean region.
Abstract: We use 2.5 to 14 years long position time series from >800 continuous Global Positioning System (GPS) stations to study vertical deformation rates in the Euro-Mediterranean region. We estimate and remove common mode errors in position time series using a principal component analysis, obtaining a significant gain in the signal-to-noise ratio of the displacements data. Following the results of a maximum likelihood estimation analysis, which gives a mean spectral index ~ −0.7, we adopt a power law + white noise stochastic model in estimating the final vertical rates and find 95% of the velocities within ±2 mm/yr, with uncertainties from filtered time series ~40% smaller than from the unfiltered ones. We highlight the presence of statistically significant velocity gradients where the stations density is higher. We find undulations of the vertical velocity field at different spatial scales both in tectonically active regions, like eastern Alps, Apennines, and eastern Mediterranean, and in regions characterized by a low or negligible tectonic activity, like central Iberia and western Alps. A correlation between smooth vertical velocities and topographic features is apparent in many sectors of the study area. Glacial isostatic adjustment and weathering processes do not completely explain the measured rates, and a combination of active tectonics and deep-seated geodynamic processes must be invoked. Excluding areas where localized processes are likely, or where subduction processes may be active, mantle dynamics is the most likely process, but regional mantle modeling is required for a better understanding.

274 citations

Journal ArticleDOI
TL;DR: In this article, an initial SE-dipping slow subduction of the Ligurian-Tethys realm beneath the Malaguide upper plate unit is proposed as an efficient geodynamic mechanism to structure the arcuate Betic-Rif orogenic system.

234 citations

Journal ArticleDOI
TL;DR: In this article, a 2-hourly data set of atmospheric precipitable water (PW) has been produced from the zenith path delay (ZPD) derived from ground-based Global Positioning System (GPS) measurements.
Abstract: [1] A 2-hourly data set of atmospheric precipitable water (PW) has been produced from the zenith path delay (ZPD) derived from ground-based Global Positioning System (GPS) measurements. The PW data are available every 2 hours from 80 to 268 International GNSS Service (IGS, formally International GPS Service) ground stations from 1997 to 2004. The accuracy of the IGS ZPD product is roughly 4 mm. An analysis technique is developed to convert ZPD to PW on a global scale. Special efforts are made on deriving surface pressure (Ps) and water-vapor-weighted atmospheric mean temperature (Tm), which are two key parameters for converting ZPD to PW. Ps is derived from global, 3-hourly surface synoptic observations with temporal, vertical and horizontal adjustments. Tm is calculated from NCEP/NCAR reanalysis with temporal, vertical and horizontal interpolations. The derived Ps and Tm at the GPS location and height have root-mean-square (rms) errors of 1.65 hPa and 1.3 K, respectively. A theoretical error analysis concludes that typical PW error associated with the errors in ZPD, Tm and Ps is on the order of 1.5 mm. The PW data set is compared with radiosonde, microwave radiometer (MWR) and satellite data. The GPS and radiosonde PW comparisons at 98 stations around the globe show a mean difference of 1.08 mm (drier for radiosonde data) with a standard deviation of differences of 2.68 mm, which corresponds to mean percentage difference and standard deviation of 5.5% and 10.6%, respectively. The bias is primarily due to known dry biases in the Vaisala radiosonde data. The RMS difference between GPS and radiosonde/MWR data ranges from 1.2 mm to 2.83 mm. The latitudinal and seasonal variations of PW derived from the GPS data agree well with that from International Satellite Cloud Climatology Project (ISCCP) data if the ISCCP data are sampled only at grid boxes containing GPS stations. The large difference between GPS and ISCCP data in the subtropics is interesting, but is not easily explained. The comparisons did not reveal any systematic bias in GPS PW data and show that a RMS difference of less than 3 mm between GPS-derived PW and other data sets is achieved. The comparison study also illustrates the value of GPS-estimated PW for examining the quality of other data sets, such as those from radiosondes and MWR. Preliminary analysis of this data set shows interesting and significant diurnal variations in PW in four different regions.

229 citations