scispace - formally typeset
Search or ask a question
Author

Jorge J. Moré

Other affiliations: Cornell University, Rice University
Bio: Jorge J. Moré is an academic researcher from Argonne National Laboratory. The author has contributed to research in topics: Optimization problem & Hessian matrix. The author has an hindex of 48, co-authored 86 publications receiving 22010 citations. Previous affiliations of Jorge J. Moré include Cornell University & Rice University.


Papers
More filters
Book ChapterDOI
01 Jan 1978

4,100 citations

Journal ArticleDOI
TL;DR: It is shown that performance profiles combine the best features of other tools for performance evaluation to create a single tool for benchmarking and comparing optimization software.
Abstract: We propose performance profiles — distribution functions for a performance metric — as a tool for benchmarking and comparing optimization software. We show that performance profiles combine the best features of other tools for performance evaluation.

3,729 citations

01 Jan 1977
TL;DR: A robust and efficient implementation of a version of the Levenberg--Marquardt algorithm is discussed and it is shown that it has strong convergence properties.
Abstract: The nonlinear least-squares minimization problem is considered. Algorithms for the numerical solution of this problem have been proposed in the past, notably by Levenberg (Quart. Appl. Math., 2, 164-168 (1944)) and Marquardt (SIAM J. Appl. Math., 11, 431-441 (1963)). The present work discusses a robust and efficient implementation of a version of the Levenberg--Marquardt algorithm and shows that it has strong convergence properties. In addition to robustness, the main features of this implementation are the proper use of implicitly scaled variables and the choice of the Levenberg--Marquardt parameter by means of a scheme due to Hebden (AERE Report TP515). Numerical results illustrating the behavior of this implementation are included. 1 table. (RWR)

1,837 citations

Journal ArticleDOI
TL;DR: In this paper, an attempt to motivate and justify quasi-Newton methods as useful modifications of Newton''s method for general and gradient nonlinear systems of equations is made, and references are given to ample numerical justification; here we give an overview of many of the important theoretical results.
Abstract: This paper is an attempt to motivate and justify quasi-Newton methods as useful modifications of Newton''s method for general and gradient nonlinear systems of equations. References are given to ample numerical justification; here we give an overview of many of the important theoretical results and each is accompanied by sufficient discussion to make the results and hence the methods plausible. Key Words and Phrases: unconstrained minimization, nonlinear simultaneous equations, update methods, quasi-Newton methods.

1,435 citations

Journal ArticleDOI
TL;DR: An algorithm for the problem of minimizing a quadratic function subject to an ellipsoidal constraint is proposed and it is shown that this algorithm is guaranteed to produce a nearly optimal solution in a finite number of iterations.
Abstract: We propose an algorithm for the problem of minimizing a quadratic function subject to an ellipsoidal constraint and show that this algorithm is guaranteed to produce a nearly optimal solution in a finite number of iterations. We also consider the use of this algorithm in a trust region Newton's method. In particular, we prove that under reasonable assumptions the sequence generated by Newton's method has a limit point which satisfies the first and second order necessary conditions for a minimizer of the objective function. Numerical results for GQTPAR, which is a Fortran implementaton of our algorithm, show that GQTPAR is quite successful in a trust region method. In our tests a call to GQTPAR only required 1.6 iterations on the average.

1,434 citations


Cited by
More filters
Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Book
01 Nov 2008
TL;DR: Numerical Optimization presents a comprehensive and up-to-date description of the most effective methods in continuous optimization, responding to the growing interest in optimization in engineering, science, and business by focusing on the methods that are best suited to practical problems.
Abstract: Numerical Optimization presents a comprehensive and up-to-date description of the most effective methods in continuous optimization. It responds to the growing interest in optimization in engineering, science, and business by focusing on the methods that are best suited to practical problems. For this new edition the book has been thoroughly updated throughout. There are new chapters on nonlinear interior methods and derivative-free methods for optimization, both of which are used widely in practice and the focus of much current research. Because of the emphasis on practical methods, as well as the extensive illustrations and exercises, the book is accessible to a wide audience. It can be used as a graduate text in engineering, operations research, mathematics, computer science, and business. It also serves as a handbook for researchers and practitioners in the field. The authors have strived to produce a text that is pleasant to read, informative, and rigorous - one that reveals both the beautiful nature of the discipline and its practical side.

17,420 citations

Journal ArticleDOI
TL;DR: There are several arguments which support the observed high accuracy of SVMs, which are reviewed and numerous examples and proofs of most of the key theorems are given.
Abstract: The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and non-separable data, working through a non-trivial example in detail. We describe a mechanical analogy, and discuss when SVM solutions are unique and when they are global. We describe how support vector training can be practically implemented, and discuss in detail the kernel mapping technique which is used to construct SVM solutions which are nonlinear in the data. We show how Support Vector machines can have very large (even infinite) VC dimension by computing the VC dimension for homogeneous polynomial and Gaussian radial basis function kernels. While very high VC dimension would normally bode ill for generalization performance, and while at present there exists no theory which shows that good generalization performance is guaranteed for SVMs, there are several arguments which support the observed high accuracy of SVMs, which we review. Results of some experiments which were inspired by these arguments are also presented. We give numerous examples and proofs of most of the key theorems. There is new material, and I hope that the reader will find that even old material is cast in a fresh light.

15,696 citations

Journal ArticleDOI
ZhenQiu Zhang1
TL;DR: A flexible technique to easily calibrate a camera that only requires the camera to observe a planar pattern shown at a few (at least two) different orientations is proposed and advances 3D computer vision one more step from laboratory environments to real world use.
Abstract: We propose a flexible technique to easily calibrate a camera. It only requires the camera to observe a planar pattern shown at a few (at least two) different orientations. Either the camera or the planar pattern can be freely moved. The motion need not be known. Radial lens distortion is modeled. The proposed procedure consists of a closed-form solution, followed by a nonlinear refinement based on the maximum likelihood criterion. Both computer simulation and real data have been used to test the proposed technique and very good results have been obtained. Compared with classical techniques which use expensive equipment such as two or three orthogonal planes, the proposed technique is easy to use and flexible. It advances 3D computer vision one more step from laboratory environments to real world use.

13,200 citations

Journal ArticleDOI
TL;DR: SciPy as discussed by the authors is an open source scientific computing library for the Python programming language, which includes functionality spanning clustering, Fourier transforms, integration, interpolation, file I/O, linear algebra, image processing, orthogonal distance regression, minimization algorithms, signal processing, sparse matrix handling, computational geometry, and statistics.
Abstract: SciPy is an open source scientific computing library for the Python programming language. SciPy 1.0 was released in late 2017, about 16 years after the original version 0.1 release. SciPy has become a de facto standard for leveraging scientific algorithms in the Python programming language, with more than 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories, and millions of downloads per year. This includes usage of SciPy in almost half of all machine learning projects on GitHub, and usage by high profile projects including LIGO gravitational wave analysis and creation of the first-ever image of a black hole (M87). The library includes functionality spanning clustering, Fourier transforms, integration, interpolation, file I/O, linear algebra, image processing, orthogonal distance regression, minimization algorithms, signal processing, sparse matrix handling, computational geometry, and statistics. In this work, we provide an overview of the capabilities and development practices of the SciPy library and highlight some recent technical developments.

12,774 citations