scispace - formally typeset
Search or ask a question
Author

Jorge L. Muñoz-Jordán

Bio: Jorge L. Muñoz-Jordán is an academic researcher from Icahn School of Medicine at Mount Sinai. The author has contributed to research in topics: Virus & Interferon. The author has an hindex of 4, co-authored 4 publications receiving 1406 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is found that expression in human A549 cells of the dengue virus nonstructural proteins NS2A, NS4A, or NS4B enhances replication of an IFN-sensitive virus.
Abstract: Dengue virus is a worldwide-distributed mosquito-borne flavivirus with a positive strand RNA genome. Its transcribed polyprotein is cleaved by host- and virus-encoded peptidases into 10 proteins, some of which are of unknown function. Although dengue virus-infected cells seem to be resistant to the antiviral action of IFN, the viral products that mediate this resistance are unknown. Therefore, we have analyzed the ability of the 10 dengue virus-encoded proteins to antagonize the IFN response. We found that expression in human A549 cells of the dengue virus nonstructural proteins NS2A, NS4A, or NS4B enhances replication of an IFN-sensitive virus. Moreover, expression of NS4B and, to a lesser extent, of NS2A and NS4A proteins results in down-regulation of IFN-β-stimulated gene expression. Cells expressing NS4B or infected with dengue virus do not exhibit nuclear signal transducer and activator of transcription (STAT) 1 on treatment with IFN-β or IFN-γ, indicating that NS4B might be involved in blocking IFN signaling during dengue virus infections. This protein, encoded by a positive strand RNA virus, is implicated as an IFN-signaling inhibitor.

622 citations

Journal ArticleDOI
TL;DR: Deletion analysis shows that that the first 125 amino acids of dengue virus NS4B are sufficient for inhibition of alpha/beta IFN (IFN-α/β) signaling, indicating that proper viral polyprotein processing is required for anti-interferon function.
Abstract: Flaviviruses are insect-borne, positive-strand RNA viruses that have been disseminated worldwide. Their genome is translated into a polyprotein, which is subsequently cleaved by a combination of viral and host proteases to produce three structural proteins and seven nonstructural proteins. The nonstructural protein NS4B of dengue 2 virus partially blocks activation of STAT1 and interferon-stimulated response element (ISRE) promoters in cells stimulated with interferon (IFN). We have found that this function of NS4B is conserved in West Nile and yellow fever viruses. Deletion analysis shows that that the first 125 amino acids of dengue virus NS4B are sufficient for inhibition of alpha/beta IFN (IFN-α/β) signaling. The cleavable signal peptide at the N terminus of NS4B, a peptide with a molecular weight of 2,000, is required for IFN antagonism but can be replaced by an unrelated signal peptide. Coexpression of dengue virus NS4A and NS4B together results in enhanced inhibition of ISRE promoter activation in response to IFN-α/β. In contrast, expression of the precursor NS4A/B fusion protein does not cause an inhibition of IFN signaling unless this product is cleaved by the viral peptidase NS2B/NS3, indicating that proper viral polyprotein processing is required for anti-interferon function.

505 citations

Journal ArticleDOI
TL;DR: It is shown that expression of the NDV V protein or the Nipah virus V, W, or C proteins rescues NDV-GFP replication in the face of the transfection-induced IFN response, and that the NDVs could be used to screen proteins expressed from plasmids for the ability to counteract the host cellIFN response.
Abstract: We have generated a recombinant Newcastle disease virus (NDV) that expresses the green fluorescence protein (GFP) in infected chicken embryo fibroblasts (CEFs). This virus is interferon (IFN) sensitive, and pretreatment of cells with chicken alpha/beta IFN (IFN-α/β) completely blocks viral GFP expression. Prior transfection of plasmid DNA induces an IFN response in CEFs and blocks NDV-GFP replication. However, transfection of known inhibitors of the IFN-α/β system, including the influenza A virus NS1 protein and the Ebola virus VP35 protein, restores NDV-GFP replication. We therefore conclude that the NDV-GFP virus could be used to screen proteins expressed from plasmids for the ability to counteract the host cell IFN response. Using this system, we show that expression of the NDV V protein or the Nipah virus V, W, or C proteins rescues NDV-GFP replication in the face of the transfection-induced IFN response. The V and W proteins of Nipah virus, a highly lethal pathogen in humans, also block activation of an IFN-inducible promoter in primate cells. Interestingly, the amino-terminal region of the Nipah virus V protein, which is identical to the amino terminus of Nipah virus W, is sufficient to exert the IFN-antagonist activity. In contrast, the anti-IFN activity of the NDV V protein appears to be located in the carboxy-terminal region of the protein, a region implicated in the IFN-antagonist activity exhibited by the V proteins of mumps virus and human parainfluenza virus type 2.

363 citations

Journal ArticleDOI
TL;DR: In this report, the contribution of PKR to the IFN-γ mediated inhibition of VSV replication in neurons was examined and treatment of NB41A3 murine neuroblastoma cells resulted in the reduced exp...
Abstract: In this report, the contribution of PKR to the IFN-γ mediated inhibition of VSV replication in neurons was examined IFN-γ treatment of NB41A3 murine neuroblastoma cells resulted in the reduced exp

15 citations


Cited by
More filters
Journal ArticleDOI
08 Oct 2009-Nature
TL;DR: It is shown that STING (stimulator of interferon genes) is critical for the induction of IFN by non-CpG intracellular DNA species produced by various DNA pathogens after infection.
Abstract: The innate immune system is critical for the early detection of invading pathogens and for initiating cellular host defence countermeasures, which include the production of type I interferon (IFN). However, little is known about how the innate immune system is galvanized to respond to DNA-based microbes. Here we show that STING (stimulator of interferon genes) is critical for the induction of IFN by non-CpG intracellular DNA species produced by various DNA pathogens after infection. Murine embryonic fibroblasts, as well as antigen presenting cells such as macrophages and dendritic cells (exposed to intracellular B-form DNA, the DNA virus herpes simplex virus 1 (HSV-1) or bacteria Listeria monocytogenes), were found to require STING to initiate effective IFN production. Accordingly, Sting-knockout mice were susceptible to lethal infection after exposure to HSV-1. The importance of STING in facilitating DNA-mediated innate immune responses was further evident because cytotoxic T-cell responses induced by plasmid DNA vaccination were reduced in Sting-deficient animals. In the presence of intracellular DNA, STING relocalized with TANK-binding kinase 1 (TBK1) from the endoplasmic reticulum to perinuclear vesicles containing the exocyst component Sec5 (also known as EXOC2). Collectively, our studies indicate that STING is essential for host defence against DNA pathogens such as HSV-1 and facilitates the adjuvant activity of DNA-based vaccines.

2,042 citations

01 Jan 2007
TL;DR: The present research attacked the Flavivirus infection through two mechanisms: Membrane Reorganization and the Compartmentalization and Assembly and Release of Particles from Flaviv virus-infected Cells and Host Resistance to Flaviviral Infection.
Abstract: FLAVIVIRUSES 1103 Background and Classification 1103 Structure and Physical Properties of the Virion 1104 Binding and Entry 1105 Genome Structure 1106 Translation and Proteolytic Processing 1107 Features of the Structural Proteins 1108 Features of the Nonstructural Proteins 1109 RNA Replication 1112 Membrane Reorganization and the Compartmentalization of Flavivirus Replication 1112 Assembly and Release of Particles from Flavivirus-infected Cells 1112 Host Resistance to Flavivirus Infection 1113

1,867 citations

Journal ArticleDOI
TL;DR: Applied aspects that arise from an increase in knowledge in this area are described, including vaccine design and manufacture, the development of novel antiviral drugs and the use of IFN-sensitive oncolytic viruses in the treatment of cancer.
Abstract: The interferon (IFN) system is an extremely powerful antiviral response that is capable of controlling most, if not all, virus infections in the absence of adaptive immunity. However, viruses can still replicate and cause disease in vivo, because they have some strategy for at least partially circumventing the IFN response. We reviewed this topic in 2000 [Goodbourn, S., Didcock, L. & Randall, R. E. (2000). J Gen Virol 81, 2341-2364] but, since then, a great deal has been discovered about the molecular mechanisms of the IFN response and how different viruses circumvent it. This information is of fundamental interest, but may also have practical application in the design and manufacture of attenuated virus vaccines and the development of novel antiviral drugs. In the first part of this review, we describe how viruses activate the IFN system, how IFNs induce transcription of their target genes and the mechanism of action of IFN-induced proteins with antiviral action. In the second part, we describe how viruses circumvent the IFN response. Here, we reflect upon possible consequences for both the virus and host of the different strategies that viruses have evolved and discuss whether certain viruses have exploited the IFN response to modulate their life cycle (e.g. to establish and maintain persistent/latent infections), whether perturbation of the IFN response by persistent infections can lead to chronic disease, and the importance of the IFN system as a species barrier to virus infections. Lastly, we briefly describe applied aspects that arise from an increase in our knowledge in this area, including vaccine design and manufacture, the development of novel antiviral drugs and the use of IFN-sensitive oncolytic viruses in the treatment of cancer.

1,564 citations

Journal ArticleDOI
07 Jan 2010-Nature
TL;DR: Light-driven proton pumps represent a high-performance and extremely versatile class of ‘optogenetic’ voltage and ion modulator, which will broadly enable new neuroscientific, biological, neurological and psychiatric investigations.
Abstract: The ability to silence the activity of genetically specified neurons in a temporally precise fashion would provide the opportunity to investigate the causal role of specific cell classes in neural computations, behaviours and pathologies. Here we show that members of the class of light-driven outward proton pumps can mediate powerful, safe, multiple-colour silencing of neural activity. The gene archaerhodopsin-3 (Arch) from Halorubrum sodomense enables near-100% silencing of neurons in the awake brain when virally expressed in the mouse cortex and illuminated with yellow light. Arch mediates currents of several hundred picoamps at low light powers, and supports neural silencing currents approaching 900 pA at light powers easily achievable in vivo. Furthermore, Arch spontaneously recovers from light-dependent inactivation, unlike light-driven chloride pumps that enter long-lasting inactive states in response to light. These properties of Arch are appropriate to mediate the optical silencing of significant brain volumes over behaviourally relevant timescales. Arch function in neurons is well tolerated because pH excursions created by Arch illumination are minimized by self-limiting mechanisms to levels comparable to those mediated by channelrhodopsins or natural spike firing. To highlight how proton pump ecological and genomic diversity may support new innovation, we show that the blue-green light-drivable proton pump from the fungus Leptosphaeria maculans (Mac) can, when expressed in neurons, enable neural silencing by blue light, thus enabling alongside other developed reagents the potential for independent silencing of two neural populations by blue versus red light. Light-driven proton pumps thus represent a high-performance and extremely versatile class of 'optogenetic' voltage and ion modulator, which will broadly enable new neuroscientific, biological, neurological and psychiatric investigations.

1,124 citations

Journal ArticleDOI
TL;DR: Dengue virus (DENV) modifies ER membrane structure to promote replication and efficient encapsidation of the genome into progeny virus, which could explain the coordination of distinct steps of the flavivirus replication cycle.

915 citations