scispace - formally typeset
Search or ask a question
Author

Jørgen Christensen-Dalsgaard

Bio: Jørgen Christensen-Dalsgaard is an academic researcher from Aarhus University. The author has contributed to research in topics: Asteroseismology & Stars. The author has an hindex of 114, co-authored 585 publications receiving 48272 citations. Previous affiliations of Jørgen Christensen-Dalsgaard include High Altitude Observatory & Space Science Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: The Transiting Exoplanet Survey Satellite (TESS) as discussed by the authors will search for planets transiting bright and nearby stars using four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars.
Abstract: The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its 2-year mission, TESS will employ four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars with I C ≈4−13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from 1 month to 1 year, depending mainly on the star’s ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10 to 100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every 4 months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.

2,604 citations

Journal ArticleDOI
TL;DR: The Transiting Exoplanet Survey Satellite (TESS) as mentioned in this paper was selected by NASA for launch in 2017 as an Astrophysics Explorer mission to search for planets transiting bright and nearby stars.
Abstract: The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its two-year mission, TESS will employ four wide-field optical CCD cameras to monitor at least 200,000 main-sequence dwarf stars with I = 4-13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from one month to one year, depending mainly on the star's ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10-100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every four months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.

1,728 citations

Journal ArticleDOI
TL;DR: In this article, the Kepler mission released data for 156,453 stars observed from the beginning of the science observations on 2009 May 2 through September 16, and there are 1235 planetary candidates with transit-like signatures detected in this period.
Abstract: On 2011 February 1 the Kepler mission released data for 156,453 stars observed from the beginning of the science observations on 2009 May 2 through September 16. There are 1235 planetary candidates with transit-like signatures detected in this period. These are associated with 997 host stars. Distributions of the characteristics of the planetary candidates are separated into five class sizes: 68 candidates of approximately Earth-size (R_p < 1.25 R_⊕), 288 super-Earth-size (1.25 R_⊕ ≤ R_p < 2 R_⊕), 662 Neptune-size (2 R_⊕ ≤ R_p < 6 R_⊕), 165 Jupiter-size (6 R_⊕ ≤ R_p < 15 R_⊕), and 19 up to twice the size of Jupiter (15 R_⊕ ≤ R_p < 22 R_⊕). In the temperature range appropriate for the habitable zone, 54 candidates are found with sizes ranging from Earth-size to larger than that of Jupiter. Six are less than twice the size of the Earth. Over 74% of the planetary candidates are smaller than Neptune. The observed number versus size distribution of planetary candidates increases to a peak at two to three times the Earth-size and then declines inversely proportional to the area of the candidate. Our current best estimates of the intrinsic frequencies of planetary candidates, after correcting for geometric and sensitivity biases, are 5% for Earth-size candidates, 8% for super-Earth-size candidates, 18% for Neptune-size candidates, 2% for Jupiter-size candidates, and 0.1% for very large candidates; a total of 0.34 candidates per star. Multi-candidate, transiting systems are frequent; 17% of the host stars have multi-candidate systems, and 34% of all the candidates are part of multi-candidate systems.

1,241 citations

Journal ArticleDOI
TL;DR: The Kepler mission as mentioned in this paper was designed with the explicit capability to detect Earth-size planets in the habitable zone of solar-like stars using the transit photometry method, and the results from just 43 days of data along with ground-based follow-up observations have identified five new transiting planets with measurements of their masses, radii, and orbital periods.
Abstract: The Kepler Mission, launched on 2009 March 6, was designed with the explicit capability to detect Earth-size planets in the habitable zone of solar-like stars using the transit photometry method. Results from just 43 days of data along with ground-based follow-up observations have identified five new transiting planets with measurements of their masses, radii, and orbital periods. Many aspects of stellar astrophysics also benefit from the unique, precise, extended, and nearly continuous data set for a large number and variety of stars. Early results for classical variables and eclipsing stars show great promise. To fully understand the methodology, processes, and eventually the results from the mission, we present the underlying rationale that ultimately led to the flight and ground system designs used to achieve the exquisite photometric performance. As an example of the initial photometric results, we present variability measurements that can be used to distinguish dwarf stars from red giants.

1,203 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report the distribution of planets as a function of planet radius, orbital period, and stellar effective temperature for orbital periods less than 50 days around solar-type (GK) stars.
Abstract: We report the distribution of planets as a function of planet radius, orbital period, and stellar effective temperature for orbital periods less than 50 days around solar-type (GK) stars. These results are based on the 1235 planets (formally "planet candidates") from the Kepler mission that include a nearly complete set of detected planets as small as 2 R_⊕. For each of the 156,000 target stars, we assess the detectability of planets as a function of planet radius, R_p, and orbital period, P, using a measure of the detection efficiency for each star. We also correct for the geometric probability of transit, R_*/a. We consider first Kepler target stars within the "solar subset" having T_eff = 4100-6100 K, log g = 4.0-4.9, and Kepler magnitude K_p 2 R_⊕ we measure an occurrence of less than 0.001 planets per star. For all planets with orbital periods less than 50 days, we measure occurrence of 0.130 ± 0.008, 0.023 ± 0.003, and 0.013 ± 0.002 planets per star for planets with radii 2-4, 4-8, and 8-32 R_⊕, in agreement with Doppler surveys. We fit occurrence as a function of P to a power-law model with an exponential cutoff below a critical period P_0. For smaller planets, P_0 has larger values, suggesting that the "parking distance" for migrating planets moves outward with decreasing planet size. We also measured planet occurrence over a broader stellar T_eff range of 3600-7100 K, spanning M0 to F2 dwarfs. Over this range, the occurrence of 2-4 R_⊕ planets in the Kepler field increases with decreasing T_eff, with these small planets being seven times more abundant around cool stars (3600-4100 K) than the hottest stars in our sample (6600-7100 K).

1,159 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The solar chemical composition is an important ingredient in our understanding of the formation, structure, and evolution of both the Sun and our Solar System as discussed by the authors, and it is an essential refer...
Abstract: The solar chemical composition is an important ingredient in our understanding of the formation, structure, and evolution of both the Sun and our Solar System. Furthermore, it is an essential refer ...

8,605 citations

Journal ArticleDOI
TL;DR: In this article, solar photospheric and meteoritic CI chondrite abundance determinations for all elements are summarized and the best currently available photosphere abundances are selected, including the meteoritic and solar abundances of a few elements (e.g., noble gases, beryllium, boron, phosphorous, sulfur).
Abstract: Solar photospheric and meteoritic CI chondrite abundance determinations for all elements are summarized and the best currently available photospheric abundances are selected. The meteoritic and solar abundances of a few elements (e.g., noble gases, beryllium, boron, phosphorous, sulfur) are discussed in detail. The photospheric abundances give mass fractions of hydrogen (X ¼ 0:7491), helium (Y ¼ 0:2377), and heavy elements (Z ¼ 0:0133), leading to Z=X ¼ 0:0177, which is lower than the widely used Z=X ¼ 0:0245 from previous compilations. Recent results from standard solar models considering helium and heavy-element settling imply that photospheric abundances and mass fractions are not equal to protosolar abundances (representative of solar system abundances). Protosolar elemental and isotopic abundances are derived from photospheric abundances by considering settling effects. Derived protosolar mass fractions are X0 ¼ 0:7110, Y0 ¼ 0:2741, and Z0 ¼ 0:0149. The solar system and photospheric abundance tables are used to compute self-consistent sets of condensation temperatures for all elements. Subject headings: astrochemistry — meteors, meteoroids — solar system: formation — Sun: abundances — Sun: photosphere

4,305 citations

Journal ArticleDOI
19 Feb 2010-Science
TL;DR: The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars, which is the region where planetary temperatures are suitable for water to exist on a planet's surface.
Abstract: The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet’s surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (~0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.

3,663 citations

Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as mentioned in this paper is a suite of open source, robust, efficient, thread-safe libraries for a wide range of applications in computational stellar astrophysics.
Abstract: Stellar physics and evolution calculations enable a broad range of research in astrophysics. Modules for Experiments in Stellar Astrophysics (MESA) is a suite of open source, robust, efficient, thread-safe libraries for a wide range of applications in computational stellar astrophysics. A one-dimensional stellar evolution module, MESAstar, combines many of the numerical and physics modules for simulations of a wide range of stellar evolution scenarios ranging from very low mass to massive stars, including advanced evolutionary phases. MESAstar solves the fully coupled structure and composition equations simultaneously. It uses adaptive mesh refinement and sophisticated timestep controls, and supports shared memory parallelism based on OpenMP. State-of-the-art modules provide equation of state, opacity, nuclear reaction rates, element diffusion data, and atmosphere boundary conditions. Each module is constructed as a separate Fortran 95 library with its own explicitly defined public interface to facilitate independent development. Several detailed examples indicate the extensive verification and testing that is continuously performed and demonstrate the wide range of capabilities that MESA possesses. These examples include evolutionary tracks of very low mass stars, brown dwarfs, and gas giant planets to very old ages; the complete evolutionary track of a 1 M ☉ star from the pre-main sequence (PMS) to a cooling white dwarf; the solar sound speed profile; the evolution of intermediate-mass stars through the He-core burning phase and thermal pulses on the He-shell burning asymptotic giant branch phase; the interior structure of slowly pulsating B Stars and Beta Cepheids; the complete evolutionary tracks of massive stars from the PMS to the onset of core collapse; mass transfer from stars undergoing Roche lobe overflow; and the evolution of helium accretion onto a neutron star. MESA can be downloaded from the project Web site (http://mesa.sourceforge.net/).

3,474 citations

Journal ArticleDOI
TL;DR: In this article, the current status of our knowledge of the chemical composition of the Sun is reviewed, essentially derived from the analysis of the solar photospheric spectrum, and a comparison of solar and meteoritic abundances confirms that there is a very good agreement between the two sets of abundances.
Abstract: We review the current status of our knowledge of the chemical composition of the Sun, essentially derived from the analysis of the solar photospheric spectrum. The comparison of solar and meteoritic abundances confirms that there is a very good agreement between the two sets of abundances. They are used to construct a Standard Abundance Distribution.

3,253 citations