scispace - formally typeset
Search or ask a question
Author

Joris J.C. Remmers

Other affiliations: Delft University of Technology
Bio: Joris J.C. Remmers is an academic researcher from Eindhoven University of Technology. The author has contributed to research in topics: Finite element method & Extended finite element method. The author has an hindex of 14, co-authored 51 publications receiving 5881 citations. Previous affiliations of Joris J.C. Remmers include Delft University of Technology.


Papers
More filters
BookDOI
17 Aug 2012
TL;DR: De Borst et al. as mentioned in this paper present a condensed version of the original book with a focus on non-linear finite element technology, including nonlinear solution strategies, computational plasticity, damage mechanics, time-dependent effects, hyperelasticity and large-strain elasto-plasticity.
Abstract: Built upon the two original books by Mike Crisfield and their own lecture notes, renowned scientist Rene de Borst and his team offer a thoroughly updated yet condensed edition that retains and builds upon the excellent reputation and appeal amongst students and engineers alike for which Crisfield's first edition is acclaimed. Together with numerous additions and updates, the new authors have retained the core content of the original publication, while bringing an improved focus on new developments and ideas. This edition offers the latest insights in non-linear finite element technology, including non-linear solution strategies, computational plasticity, damage mechanics, time-dependent effects, hyperelasticity and large-strain elasto-plasticity. The authors' integrated and consistent style and unrivalled engineering approach assures this book's unique position within the computational mechanics literature.

2,568 citations

Book
15 Aug 1991
TL;DR: De Borst et al. as discussed by the authors present a condensed version of the original book with a focus on non-linear finite element technology, including nonlinear solution strategies, computational plasticity, damage mechanics, time-dependent effects, hyperelasticity and large-strain elasto-plasticity.
Abstract: Built upon the two original books by Mike Crisfield and their own lecture notes, renowned scientist Rene de Borst and his team offer a thoroughly updated yet condensed edition that retains and builds upon the excellent reputation and appeal amongst students and engineers alike for which Crisfield's first edition is acclaimed. Together with numerous additions and updates, the new authors have retained the core content of the original publication, while bringing an improved focus on new developments and ideas. This edition offers the latest insights in non-linear finite element technology, including non-linear solution strategies, computational plasticity, damage mechanics, time-dependent effects, hyperelasticity and large-strain elasto-plasticity. The authors' integrated and consistent style and unrivalled engineering approach assures this book's unique position within the computational mechanics literature.

2,119 citations

Journal ArticleDOI
TL;DR: In this article, discrete and smeared crack models for concrete fracture are discussed in a historical perspective, and it is argued that these two computational approaches, originally conceived as very different, can be brought together by exploiting the partition-of-unity property of finite element shape functions.
Abstract: Discrete and smeared crack models for concrete fracture are discussed in a historical perspective. It is argued that these two computational approaches, originally conceived as very different, can be brought together by exploiting the partition-of-unity property of finite element shape functions. The cohesive segments method, which exploits this partition-of-unity property, exhibits advantages of both the discrete and smeared crack approaches, and is capable of describing the transition from distributed micro-cracking to a dominant crack. The versatility of the cohesive methodology is shown by incorporating water diffusion and ion transport into the formulation.

230 citations

Journal ArticleDOI
TL;DR: In this paper, a finite element framework for the simulation of the nucleation, growth and coalescence of multiple cracks in solids is presented. But the simulation is restricted to brittle solids.
Abstract: The cohesive segments method is a finite element framework that allows for the simulation of the nucleation, growth and coalescence of multiple cracks in solids. In this framework, cracks are introduced as jumps in the displacement field by employing the partition of unity property of finite element shape functions. The magnitude of these jumps are governed by cohesive constitutive relations. In this paper, the cohesive segments method is extended for the simulation of fast crack propagation in brittle solids. The performance of the method is demonstrated in several examples involving crack growth in linear elastic solids under plane stress conditions: tensile loading of a block; shear loading of a block and crack growth along and near a bi-material interface.

203 citations

Journal ArticleDOI
TL;DR: In this article, the importance of the cohesive-zone approach to analyze localisation and fracture in engineering materials is emphasised and ways to incorporate the cohesive zone methodology in computational methods are discussed.

171 citations


Cited by
More filters
Book
28 Sep 1997
TL;DR: Bonet and Wood as discussed by the authors provide a complete, clear, and unified treatment of nonlinear continuum analysis and finite element techniques under one roof, providing an essential resource for postgraduates studying non-linear continuum mechanics and ideal for those in industry requiring an appreciation of the way in which their computer simulation programs work.
Abstract: Designing engineering components that make optimal use of materials requires consideration of the nonlinear characteristics associated with both manufacturing and working environments. The modeling of these characteristics can only be done through numerical formulation and simulation, and this requires an understanding of both the theoretical background and associated computer solution techniques. By presenting both nonlinear continuum analysis and associated finite element techniques under one roof, Bonet and Wood provide, in this edition of this successful text, a complete, clear, and unified treatment of these important subjects. New chapters dealing with hyperelastic plastic behavior are included, and the authors have thoroughly updated the FLagSHyP program, freely accessible at www.flagshyp.com. Worked examples and exercises complete each chapter, making the text an essential resource for postgraduates studying nonlinear continuum mechanics. It is also ideal for those in industry requiring an appreciation of the way in which their computer simulation programs work.

1,859 citations

Book ChapterDOI
01 Jan 1997
TL;DR: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems and discusses the main points in the application to electromagnetic design, including formulation and implementation.
Abstract: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems. Although we discuss the main points in the application of the finite element method to electromagnetic design, including formulation and implementation, those who seek deeper understanding of the finite element method should consult some of the works listed in the bibliography section.

1,820 citations

Journal ArticleDOI
TL;DR: It is shown that the combination of the phase-field model and local adaptive refinement provides an effective method for simulating fracture in three dimensions.

1,260 citations

Journal ArticleDOI
TL;DR: In this paper, a finite element analysis of delamination in laminated composites is addressed using interface elements and an interface damage law, where the principles of linear elastic fracture mechanics are indirectly used by equating the area underneath the traction/relative displacement curve to the critical energy release rate of the mode under examination.
Abstract: The finite element analysis of delamination in laminated composites is addressed using interface elements and an interface damage law. The principles of linear elastic fracture mechanics are indirectly used by equating, in the case of single-mode delamination, the area underneath the traction/relative displacement curve to the critical energy release rate of the mode under examination. For mixed-mode delamination an interaction model is used which can fulfil various fracture criteria proposed in the literature. It is then shown that the model can be recast in the framework of a more general damage mechanics theory. Numerical results are presented for the analyses of a double cantilever beam specimen and for a problem involving multiple delamination for which comparisons are made with experimental results. Issues related with the numerical solution of the non-linear problem of the delamination are discussed, such as the influence of the interface strength on the convergence properties and the final results, the optimal choice of the iterative matrix in the predictor and the number of integration points in the interface elements. Copyright © 2001 John Wiley & Sons, Ltd.

1,169 citations

Journal ArticleDOI
TL;DR: In this paper, two different families of numerical methods are considered to solve the problem of a homogeneous linear reference material undergoing a nonhomogeneous periodic eigenstrain, and the relative merits of the two methods are compared and several examples are discussed.

1,028 citations