scispace - formally typeset
Search or ask a question
Author

Jörn Alphei

Bio: Jörn Alphei is an academic researcher from University of Göttingen. The author has contributed to research in topics: Biomass (ecology) & Soil water. The author has an hindex of 14, co-authored 20 publications receiving 1338 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The presence of nitrogen fixers seemed to be the most important component of the plant diversity manipulation for soil heterotrophs, and reduction in plant biomass due to the simulated loss of plant species had more pronounced effects on voles and earthworms than on microbes.
Abstract: The loss of plant species from terrestrial ecosystems may cause changes in soil decomposer communities and in decomposition of organic material with potential further consequences for other ecosystem processes. This was tested in experimental communities of 1, 2, 4, 8, 32 plant species and of 1, 2 or 3 functional groups (grasses, legumes and non-leguminous forbs). As plant species richness was reduced from the highest species richness to monocultures, mean aboveground plant biomass decreased by 150%, but microbial biomass (measured by substrate induced respiration) decreased by only 15% (P = 0.05). Irrespective of plant species richness, the absence of legumes (across diversity levels) caused microbial biomass to decrease by 15% (P = 0.02). No effect of plant species richness or composition was detected on the microbial metabolic quotient (qCO2) and no plant species richness effect was found on feeding activity of the mesofauna (assessed with a bait-lamina-test). Decomposition of cellulose and birchwood sticks was also not affected by plant species richness, but when legumes were absent, cellulose samples were decomposed more slowly (16% in 1996, 27% in 1997, P = 0.006). A significant decrease in earthworm population density of 63% and in total earthworm biomass by 84% was the single most prominent response to the reduction of plant species richness, largely due to a 50% reduction in biomass of the dominant `anecic' earthworms. Voles (Arvicola terrestris L.) also had a clear preference for high-diversity plots. Soil moisture during the growing season was unaffected by plant species richness or the number of functional groups present. In contrast, soil temperature was 2 K higher in monocultures compared with the most diverse mixtures on a bright day at peak season. We conclude that the lower abundance and activity of decomposers with reduced plant species richness was related to altered substrate quantity, a signal which is not reflected in rates of decomposition of standard test material. The presence of nitrogen fixers seemed to be the most important component of the plant diversity manipulation for soil heterotrophs. The reduction in plant biomass due to the simulated loss of plant species had more pronounced effects on voles and earthworms than on microbes, suggesting that higher trophic levels are more strongly affected than lower trophic levels.

315 citations

Journal ArticleDOI
TL;DR: It is concluded that nematodes and protozoa stimulated plant growth by non-nutritional effects, whereas the effects of earthworms were caused by an increase in nutrient supply to H. europaeus.
Abstract: Interactions among protozoa (mixed cultures of ciliates, flagellates and naked amoebae), bacteria-feeding nematodes (Pellioditis pellio Schneider) and the endogeic earthworm species Aporrectodea caliginosa (Savigny) were investigated in experimental chambers with soil from a beechwood (Fagus sylvatica L.) on limestone. Experimental chambers were planted with the grass Hordelymus europeaus L. (Poaceae) and three compartments separated by 45-μm mesh were established: rhizosphere, intermediate and non-rhizosphere. The experiment lasted for 16 weeks and the following parameters were measured at the end of the experiment: shoot and root mass of H. europaeus, carbon and nitrogen content in shoots and roots, density of ciliates, amoebae, flagellates and nematodes, microbial biomass (SIR), basal respiration, streptomycin sensitive respiration, ammonium and nitrate contents, phosphate content of soil compartments. In addition, leaching of nutrients (nitrogen and phosphorus) and leachate pH were measured at regular intervals in leachate obtained from suction cups in the experimental chambers. Protozoa stimulated the recovery of nitrifying bacteria following defaunation (by chloroform fumigation) and increased nitrogen losses as nitrate in leachate. In contrast, protozoa and nematodes reduced leaching of phosphate, an effect ascribed to stimulation of microbial growth early in the experiment. Earthworms strongly increased the amount of extractable mineral nitrogen whereas it was strongly reduced by protozoa and nematodes. Both protozoa and nematodes reduced the stimulatory effect of earthworms on nitrogen mineralization. Microbial biomass, basal respiration, and numbers of protozoa and nematodes increased in the vicinity of the root. Protozoa generally caused a decrease in microbial biomass whereas nematodes and earthworms reduced microbial biomass only in the absence of protozoa. None of the animals studied significantly affected basal respiration, but specific respiration of microorganisms (O2 consumption per unit biomass) was generally higher in animal treatments. The stimulatory effect of nematodes and earthworms, however, occurred only in the absence of protozoa. The sensitivity of respiration to streptomycin suggested that protozoa selectively grazed on bacterial biomass but the bacterial/fungal ratio appeared to be unaffected by grazing of P. pellio. Earthworms reduced root biomass of H. europaeus, although shoot biomass remained unaffected, and concentrations of nitrogen in shoots and particularly in roots were strongly increased by earthworms. Both nematodes and protozoa increased plant biomass, particularly that of roots. This increase in plant biomass was accompanied by a marked decrease in nitrogen concentrations in roots and to a lesser extent in shoots. Generally, the effects of protozoa on plant growth considerably exceeded those of nematodes. It is concluded that nematodes and protozoa stimulated plant growth by non-nutritional effects, whereas the effects of earthworms were caused by an increase in nutrient supply to H. europaeus.

238 citations

Journal ArticleDOI
TL;DR: In this paper, the role of the soil fauna interacting with rhizosphere micro-organisms and plant roots has been investigated, and it is shown that the interaction between plant roots, root exudates, and microorganisms can only be understood in relation to soil faunal activity.

176 citations

Journal ArticleDOI
01 Jul 2004-Oikos
TL;DR: The results suggest that microbivorous soil invertebrates are controlled by food quality rather than quantity and indicate that presence of certain plant species and functional groups may be more important for collembolan community structure than the diversity of plant speciesand functional groups per se.
Abstract: The response of species numbers and density of Collembola to manipulation of plant species richness (1, 2, 4, 8, 32 species) and number of plant functional groups (grasses, legumes and non-legume herbs) was studied in an experimental grassland at the Swiss BIODEPTH site (Lupsingen, Switzerland) in October 1997. Plant species richness or number of plant functional groups did not affect total diversity of Collembola, however, the number of Collembola species increased in the presence of legumes and the grass Trisetum flavescens. The abundance of Protaphorura armata increased but that of Hypogastruridae/Neanuridae significantly decreased with increasing number of plant functional groups. Other groups including the herbivorous Symphypleona did not respond to plant species richness and plant functional groups. Possibly, Hypogastruridae/Neanuridae species are weak competitors declining in density if the density of other Collembola groups increase. In general, the effect of the number of plant functional groups on the densities of collembolan taxa was stronger than that of plant species richness. Changes in Collembola density and diversity in part was likely caused by increased soil microbial and fine root biomass in treatments with higher plant functional group diversity. The presence of legumes resulted in an increase in the densities of total Collembola, Symphypleona/Neelipleona and Isotomidae indicating that they benefited from the high litter quality and the increased microbial biomass in the rhizosphere of legumes. The results suggest that microbivorous soil invertebrates are controlled by food quality rather than quantity. Furthermore, they indicate that presence of certain plant species and functional groups may be more important for collembolan community structure than the diversity of plant species and functional groups per se.

119 citations


Cited by
More filters
BookDOI
TL;DR: In this paper, the authors present a set of methods for soil sampling and analysis, such as: N.H.Hendershot, H.M.Hettiarachchi, C.C.De Freitas Arbuscular Mycorrhiza, Y.K.Soon and W.J.
Abstract: SOIL SAMPLING AND HANDLING, G.T. Patterson and M.R. Carter Soil Sampling Designs, D. Pennock, T. Yates, and J. Braidek Sampling Forest Soils, N. Belanger and K.C.J. Van Rees Measuring Change in Soil Organic Carbon Storage, B.H. Ellert, H.H. Janzen, A.J. VandenBygaart, and E. Bremer Soil Sample Handling and Storage, S.C. Sheppard and J.A. Addison Quality Control in Soil Chemical Analysis, C. Swyngedouw and R. Lessard DIAGNOSTIC METHODS for SOIL and ENVIRONMENTAL MANAGEMENT, J.J. Schoenau and I.P. O'Halloran Nitrate and Exchangeable Ammonium Nitrogen, D.G. Maynard, Y.P. Kalra, and J.A. Crumbaugh Mehlich 3 Extractable Elements, N. Ziadi and T. Sen Tran Sodium Bicarbonate Extractable Phosphorus, J.J. Schoenau and I. P. O'Halloran Boron, Molybdenum and Selenium, G. M. Hettiarachchi and U. C. Gupta Trace Element Assessment, W.H. Hendershot, H. Lalande, D. Reyes, and D. MacDonald Readily Soluble Aluminum and Manganese in Acid Soils, Y.K. Soon, N. Belanger, and W.H. Hendershot Lime Requirement, N. Ziadi and T. Sen Tran Ion Supply Rates Using Ion Exchange Resins, P. Qian, J.J. Schoenau, and N. Ziadi Environmental Soil Phosphorus Indices, A.N. Sharpley, P.J.A. Kleinman and J.L. Weld Electrical Conductivity and Soluble Ions, J.J. Miller and D. Curtin SOIL CHEMICAL ANALYSES, Y.K. Soon and W.H. Hendershot Soil Reaction and Exchangeable Acidity, W.H. Hendershot, H. Laland,e and M. Duquette Collection and Characterization of Soil Solutions, J.D. MacDonald, N. Belanger, S. Sauve, F. Courchesne, and W.H. Hendershot Ion Exchange and Exchangeable Cations, W.H. Hendershot, H. Lalande, and M. Duquette Non-Exchangeable Ammonium, Y.K. Soon and B.C. Liang Carbonates, T.B. Goh and A.R. Mermut Total and Organic Carbon, J.O. Skjemstad and J.A. Baldock Total Nitrogen, P.M. Rutherford, W.B. McGill, C.T. Figueiredo, and J.M. Arocena Chemical Characterization of Soil Sulphur, C.G. Kowalenko and M. Grimmett Total and Organic Phosphorus, I.P. O'Halloran and B.J. Cade-Menum Characterization of Available P by Sequential Extraction, H. Tiessen and J.O. Moir Extractable Al, Fe, Mn, and Si, F. Courchesne and M.C. Turmel Determining Nutrient Availability in Forest Soils, N. Belanger, David Pare, and W.H. Hendershot Chemical Properties of Organic Soils, A. Karam SOIL BIOLOGICAL ANALYSES, E. Topp and C.A. Fox Cultural Methods for Soil and Root Associated Microorganisms, J.J. Germida and J.R. de Freitas Arbuscular Mycorrhiza, Y. Dalpe and C. Hamel Root Nodule Bacteria and Symbiotic Nitrogen Fixation, D. Prevost and H. Antoun Microarthropods, J.P Winter and V.M. Behan-Pelletier Nematodes, T.A. Forge and J. Kimpinski Earthworms, M.J. Clapperton, G.H. Baker and C.A. Fox Enchytraeids, S.M. Adl Protozoa, S.M. Adl, D. Acosta-Mercado, and D.H. Lynn Denitrification Techniques for Soils, C.F. Drury, D.D. Myrold, E.G. Beauchamp, and W.D.Reynolds Nitrification Techniques in Soil Systems, C.F. Drury, S.C. Hart, and X.M. Yang Substrate-Induced Respiration and Selective Inhibition as Measures of Microbial Biomass in Soils, V.L. Bailey, J.L. Smith, and H. Bolton Jr. Assessment of Soil Biological Activity, R.P.Beyaert and C.A. Fox Soil ATP, R.P. Voroney, G. Wen, and R.P. Beyaert Lipid-Based Community Analysis, K.E. Dunfield Bacterial Community Analyses by Denaturing Gradient Gel Electrophoresis (DGGE), E. Topp, Y.-C. Tien, and A. Hartmann Indicators of Soil Food Web Properties, T.A. Forge and M. Tenuta SOIL ORGANIC MATTER ANALYSES, E.G. Gregorich and M.H. Beare Carbon Mineralization, D.W. Hopkins Mineralizable Nitrogen, Denis Curtin and C.A. Campbell Physically Uncomplexed Organic Matter, E.G. Gregorich and M.H. Beare Extraction and Characterization of Dissolved Organic Matter, M.H. Chantigny, D.A. Angers, K. Kaiser, and K. Kalbitz Soil Microbial Biomass C, N, P and S, R.P. Voroney, P.C. Brookes, and R.P. Beyaert Carbohydrates, M.H. Chantigny and D.A. Angers Organic Forms of Nitrogen, D.C. Olk Soil Humus Fractions, D.W. Anderson and J.J Schoenau Soil Organic Matter Analysis by Solid-State 13C Nuclear Magnetic Resonance Spectroscopy, M. J. Simpson and C. M. Preston Stable Isotopes in Soil and Environmental Research, B.H. Ellert and L. Rock SOIL PHYSICAL ANALYSES, D.A. Angers and F.J. Larney Particle Size Distribution, D. Kroetsch and C. Wang Soil Shrinkage, C.D. Grant Soil Density and Porosity, X. Hao, B.C. Ball, J.L.B. Culley, M.R. Carter, and G.W. Parkin Soil Consistency: Upper and Lower Plastic Limits, R.A. McBride Compaction and Compressibility, P. Defossez, T. Keller and G. Richard Field Soil Strength, G.C. Topp and D.R. Lapen Air Permeability, C.D. Grant and P.H. Groenevelt Aggregate Stability to Water, D.A. Angers, M.S. Bullock, and G.R. Mehuys Dry Aggregate Size Distribution, F.J. Larney Soil Air, R.E. Farrell and J.A. Elliott Soil-Surface Gas Emissions, P. Rochette and N. Bertrand Bulk Density Measurement in Forest Soils, D.G. Maynard and M.P. Curran Physical Properties of Organic Soils and Growing Media: Particle Size and Degree of Decomposition, L.E. Parent and J. Caron Physical Properties of Organic Soils and Growing Media: Water and Air Storage and Flow Dynamics, J. Caron, D.E. Elrick, J.C. Michel, and R. Naasz SOIL WATER ANALYSES, W.D. Reynolds and G.C. Topp Soil Water Analyses: Principles and Parameters, W.D. Reynolds and G.C. Topp Soil Water Content, G.C. Topp, G.W. Parkin, and Ty P.A Ferre Soil Water Potential, N.J. Livingston and G.C. Topp Soil Water Desorption and Imbibition: Tension and Pressure Techniques, W.D. Reynolds and G.C. Topp Soil Water Desorption and Imbibition: Long Column, W.D. Reynolds and G.C. Topp Soil Water Desorption and Imbibition: Psychrometry, W.D. Reynolds and G.C. Topp Saturated Hydraulic Properties: Laboratory Methods, W.D. Reynolds Saturated Hydraulic Properties: Well Permeameter, W.D. Reynolds Saturated Hydraulic Properties: Ring Infiltrometer, W.D. Reynolds Saturated Hydraulic Properties: Auger-Hole, G.C. Topp Saturated Hydraulic Properties: Piezometer, G.C. Topp Unsaturated Hydraulic Properties: Laboratory Tension Infiltrometer, F.J. Cook Unsaturated Hydraulic Properties: Laboratory Evaporation, O.O. B. Wendroth and N. Wypler Unsaturated Hydraulic Properties: Field Tension Infiltrometer, W.D. Reynolds Unsaturated Hydraulic Properties: Instantaneous Profile, W.D. Reynolds Estimation of Soil Hydraulic Properties, F.J. Cook and H.P. Cresswell Analysis of Soil Variability, B.C. Si, R.G. Kachanoski, and W.D. Reynolds APPENDIX Site Description, G.T. Patterson and J.A. Brierley General Safe Laboratory Operation Procedures, P. St-Georges INDEX

4,631 citations

Journal ArticleDOI
11 Jun 2004-Science
TL;DR: This work shows how aboveground and belowground components are closely interlinked at the community level, reinforced by a greater degree of specificity between plants and soil organisms than has been previously supposed.
Abstract: All terrestrial ecosystems consist of aboveground and belowground components that interact to influence community- and ecosystem-level processes and properties. Here we show how these components are closely interlinked at the community level, reinforced by a greater degree of specificity between plants and soil organisms than has been previously supposed. As such, aboveground and belowground communities can be powerful mutual drivers, with both positive and negative feedbacks. A combined aboveground-belowground approach to community and ecosystem ecology is enhancing our understanding of the regulation and functional significance of biodiversity and of the environmental impacts of human-induced global change phenomena.

3,683 citations

Journal ArticleDOI
TL;DR: Crossfertilization between approaches based on species richness on the one hand, and on functional traits and types on the other, is a promising way of gaining mechanistic insight into the links between plant diversity and ecosystem processes and contributing to practical management for the conservation of diversity andcosystem services.
Abstract: The links between plant diversity and ecosystem functioning remain highly controversial. There is a growing consensus, however, that functional diversity, or the value and range of species traits, rather than species numbers per se, strongly determines ecosystem functioning. Despite its importance, and the fact that species diversity is often an inadequate surrogate, functional diversity has been studied in relatively few cases. Approaches based on species richness on the one hand, and on functional traits and types on the other, have been extremely productive in recent years, but attempts to connect their findings have been rare. Crossfertilization between these two approaches is a promising way of gaining mechanistic insight into the links between plant diversity and ecosystem processes and contributing to practical management for the conservation of diversity and ecosystem services.

2,756 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reveal possible causes and processes leading to priming actions using the references on agricultural ecosystems and model experiments, and summarize in Tables for positive and negative real and apparent priming effects induced after the addition of different organic and mineral substances to the soil.
Abstract: Priming effects are strong short-term changes in the turnover of soil organic matter caused by comparatively moderate treatments of the soil. In the course of priming effects large amounts of C, N and other nutrients can be released or immobilized in soil in a very short time. These effects have been measured in many field and laboratory experiments; however, only a few of the studies were aimed at an extended investigation of the mechanisms of such phenomena. The aim of this overview is to reveal possible causes and processes leading to priming actions using the references on agricultural ecosystems and model experiments. Multiple mechanisms and sources of released C and N are presented and summarized in Tables for positive and negative real and apparent priming effects induced after the addition of different organic and mineral substances to the soil. Soil microbial biomass plays the key role in the processes leading to the real priming effects. The most important mechanisms for the real priming effects are the acceleration or retardation of soil organic matter turnover due to increased activity or amount of microbial biomass. Isotopic exchange, pool substitution, and different uncontrolled losses of mineralized N from the soil are responsible for the apparent N priming effects. Other multiple mechanisms (predation, competition for nutrients between roots and microorganisms, preferred uptake, inhibition, etc.) in response to addition of different substances are also discussed. These mechanisms can be distinguished from each other by the simultaneous monitoring of C and N release dynamics; its comparison with the course of microbial activity; and by the labelling of different pools with 14 C or 13 C and 15 N. Quantitative methods for describing priming effects and their dynamics using 14 C and 15 N isotopes, as well as for non-isotopic studies are proposed.

2,388 citations

Journal ArticleDOI
27 Nov 2014-Nature
TL;DR: Recent progress in understanding belowground biodiversity and its role in determining the ecological and evolutionary responses of terrestrial ecosystems to current and future environmental change are reviewed.
Abstract: Evidence is mounting that the immense diversity of microorganisms and animals that live belowground contributes significantly to shaping aboveground biodiversity and the functioning of terrestrial ecosystems. Our understanding of how this belowground biodiversity is distributed, and how it regulates the structure and functioning of terrestrial ecosystems, is rapidly growing. Evidence also points to soil biodiversity as having a key role in determining the ecological and evolutionary responses of terrestrial ecosystems to current and future environmental change. Here we review recent progress and propose avenues for further research in this field.

2,074 citations