scispace - formally typeset
Search or ask a question
Author

Jörn Bonse

Bio: Jörn Bonse is an academic researcher from Bundesanstalt für Materialforschung und -prüfung. The author has contributed to research in topics: Laser & Femtosecond. The author has an hindex of 43, co-authored 167 publications receiving 7838 citations. Previous affiliations of Jörn Bonse include Folkwang University of the Arts & Spanish National Research Council.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the initial modification and ablation of crystalline silicon with single and multiple Ti:sapphire laser pulses of 5 to 400 fs duration was investigated, and the authors found the phenomena amorphization, melting, re-crystallization, nucleated vaporization, and Ablation to occur with increasing laser fluence down to the shortest pulse durations.
Abstract: We investigated the initial modification and ablation of crystalline silicon with single and multiple Ti:sapphire laser pulses of 5 to 400 fs duration. In accordance with earlier established models, we found the phenomena amorphization, melting, re-crystallization, nucleated vaporization, and ablation to occur with increasing laser fluence down to the shortest pulse durations. We noticed new morphological features (bubbles) as well as familiar ones (ripples, columns). A nearly constant ablation threshold fluence on the order of 0.2 J/cm2 for all pulse durations and multiple-pulse irradiation was observed. For a duration of ≈100 fs, significant incubation can be observed, whereas for 5 fs pulses, the ablation threshold does not depend on the pulse number within the experimental error. For micromachining of silicon, a pulse duration of less than 500 fs is not advantageous.

725 citations

Journal ArticleDOI
TL;DR: In this paper, the formation of laser-induced periodic surface structures (LIPSS) in different materials (metals, semiconductors, and dielectrics) upon irradiation with linearly polarized fs-laser pulses (τ,∼ 30-150 fs, λ, ∼, ∼ 800 nm) in air environment is studied experimentally and theoretically.
Abstract: The formation of laser-induced periodic surface structures (LIPSS) in different materials (metals, semiconductors, and dielectrics) upon irradiation with linearly polarized fs-laser pulses (τ ∼ 30–150 fs, λ ∼ 800 nm) in air environment is studied experimentally and theoretically. In metals, predominantly low-spatial-frequency-LIPSS with periods close to the laser wavelength λ are observed perpendicular to the polarization. Under specific irradiation conditions, high-spatial-frequency-LIPSS with sub-100-nm spatial periods (∼λ/10) can be generated. For semiconductors, the impact of transient changes of the optical properties to the LIPSS periods is analyzed theoretically and experimentally. In dielectrics, the importance of transient excitation stages in the LIPSS formation is demonstrated experimentally using (multiple) double-fs-laser-pulse irradiation sequences. A characteristic decrease of the LIPSS periods is observed for double-pulse delays of less than 2 ps.

653 citations

Journal ArticleDOI
TL;DR: In this article, the current state in the field of laser-induced periodic surface structures (LIPSS) is reviewed, and the formation mechanisms are analyzed in ultrafast time-resolved scattering, diffraction, and polarization constrained double-pulse experiments.
Abstract: Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon and can be generated on almost any material upon irradiation with linearly polarized radiation. With the availability of ultrashort laser pulses, LIPSS have gained an increasing attraction during the past decade, since these structures can be generated in a simple single-step process, which allows a surface nanostructuring for tailoring optical, mechanical, and chemical surface properties. In this study, the current state in the field of LIPSS is reviewed. Their formation mechanisms are analyzed in ultrafast time-resolved scattering, diffraction, and polarization constrained double-pulse experiments. These experiments allow us to address the question whether the LIPSS are seeded via ultrafast energy deposition mechanisms acting during the absorption of optical radiation or via self-organization after the irradiation process. Relevant control parameters of LIPSS are identified, and technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed.

607 citations

Journal ArticleDOI
TL;DR: In this paper, the formation of nearly wavelength-sized laser-induced periodic surface structures (LIPSSss) on single-crystalline silicon upon irradiation with single or multiple femtosecond-laser pulses (pulse duration τ=130
Abstract: The formation of nearly wavelength-sized laser-induced periodic surface structures (LIPSSs) on single-crystalline silicon upon irradiation with single or multiple femtosecond-laser pulses (pulse duration τ=130 fs and central wavelength λ=800 nm) in air is studied experimentally and theoretically. In our theoretical approach, we model the LIPSS formation by combining the generally accepted first-principles theory of Sipe and co-workers with a Drude model in order to account for transient intrapulse changes in the optical properties of the material due to the excitation of a dense electron-hole plasma. Our results are capable to explain quantitatively the spatial periods of the LIPSSs being somewhat smaller than the laser wavelength, their orientation perpendicular to the laser beam polarization, and their characteristic fluence dependence. Moreover, evidence is presented that surface plasmon polaritons play a dominant role during the initial stage of near-wavelength-sized periodic surface structures in fem...

555 citations

Journal ArticleDOI
TL;DR: In this article, the growth of a grating perpendicular to the polarization vector consisting of nearly wavelength-sized periodic lines was observed with an increasing number of pulses per spot, up to 100, and the formation of equally oriented ripples with a spatial period close to half the laser wavelength.
Abstract: Laser-induced periodic surface structures (LIPSS; ripples) with different spatial characteristics have been observed after irradiation of single-crystalline indium phosphide (c-InP) with multiple linearly polarized femtosecond pulses (130fs, 800nm) in air. With an increasing number of pulses per spot, N, up to 100, a characteristic evolution of two different types of ripples has been observed, i.e., (i) the growth of a grating perpendicular to the polarization vector consisting of nearly wavelength-sized periodic lines and (ii), in a specific pulse number regime (N=5–30), the additional formation of equally oriented ripples with a spatial period close to half of the laser wavelength. For pulse numbers higher than 50, the formation of micrometer-spaced grooves has been found, which are oriented perpendicular to the ripples. These topographical surface alterations are discussed in the frame of existing LIPSS theories.

345 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A comprehensive overview of the progress that has been made within the context of 1D ZnO nanostructures synthesized via wet chemical methods can be found in this paper, where the synthetic methodologies and corresponding growth mechanisms, different structures, doping and alloying, position-controlled growth on substrates, and finally, their functional properties as catalysts, hydrophobic surfaces, sensors, and in nanoelectronic, optical, optoelectronics, and energy harvesting devices.
Abstract: One-dimensional (1D) ZnO nanostructures have been studied intensively and extensively over the last decade not only for their remarkable chemical and physical properties, but also for their current and future diverse technological applications. This article gives a comprehensive overview of the progress that has been made within the context of 1D ZnO nanostructures synthesized via wet chemical methods. We will cover the synthetic methodologies and corresponding growth mechanisms, different structures, doping and alloying, position-controlled growth on substrates, and finally, their functional properties as catalysts, hydrophobic surfaces, sensors, and in nanoelectronic, optical, optoelectronic, and energy harvesting devices.

1,247 citations

Journal ArticleDOI
TL;DR: Unscreened surface charge of LSPC-synthesized colloids is the key to achieving colloidal stability and high affinity to biomolecules as well as support materials, thereby enabling the fabrication of bioconjugates and heterogeneous catalysts.
Abstract: Driven by functionality and purity demand for applications of inorganic nanoparticle colloids in optics, biology, and energy, their surface chemistry has become a topic of intensive research interest. Consequently, ligand-free colloids are ideal reference materials for evaluating the effects of surface adsorbates from the initial state for application-oriented nanointegration purposes. After two decades of development, laser synthesis and processing of colloids (LSPC) has emerged as a convenient and scalable technique for the synthesis of ligand-free nanomaterials in sealed environments. In addition to the high-purity surface of LSPC-generated nanoparticles, other strengths of LSPC include its high throughput, convenience for preparing alloys or series of doped nanomaterials, and its continuous operation mode, suitable for downstream processing. Unscreened surface charge of LSPC-synthesized colloids is the key to achieving colloidal stability and high affinity to biomolecules as well as support materials,...

892 citations