scispace - formally typeset
Search or ask a question
Author

José A. M. Catita

Bio: José A. M. Catita is an academic researcher from Fernando Pessoa University. The author has contributed to research in topics: Daphnia magna & Medicine. The author has an hindex of 8, co-authored 17 publications receiving 343 citations. Previous affiliations of José A. M. Catita include University of Porto & Instituto de Biologia Molecular e Celular.

Papers
More filters
Journal ArticleDOI
11 Jun 2018-PLOS ONE
TL;DR: Data shows that methods other than differential centrifugation can be applied to quickly and efficiently isolate exosomes from reduced biofluid volumes and the possibility to use small volumes is fundamental in the context of translational and clinical research, thus the results here presented contribute significantly in this respect.
Abstract: The potential of exosomes as biomarker resources for diagnostics, prognostics and even for therapeutics is an area of intense research. Despite the various approaches available, there is no consensus with respect to the best methodology for isolating exosomes and to provide substantial yields with reliable quality. Differential centrifugation is the most commonly used method but it is time-consuming and requires large sample volumes, thus alternative methods are urgently needed. In this study two precipitation-based methods and one column-based approach were compared for exosome isolation from distinct biofluids (serum, plasma and cerebrospinal fluid). Exosome characterization included morphological analyses, determination of particle concentration, stability and exosome preparations’ purity, using different complementary approaches such as Nanoparticle Tracking Analysis, Electrophoretic Light Scattering, Transmission Electron Microscopy, EXOCET colorimetric assay, protein quantification methods and western blotting. The three commercial kits tested successfully isolated exosomes from the biofluids under study, although ExoS showed the best performance in terms of exosome yield and purity. Data shows that methods other than differential centrifugation can be applied to quickly and efficiently isolate exosomes from reduced biofluid volumes. The possibility to use small volumes is fundamental in the context of translational and clinical research, thus the results here presented contribute significantly in this respect.

222 citations

Journal ArticleDOI
TL;DR: It was demonstrated that the encapsulation of miconazole in NLC allows for obtaining the same therapeutic effect of a commercial oral gel formulation, using a 17-fold lower dose of miconsazole.

116 citations

Journal ArticleDOI
TL;DR: The thermodynamics of the interaction of these hydrophobically modified polymers with surfactants of the same charge (DMRX/CnTAC) by isothermal titration calorimetry (ITC) is studied to try to discriminate the solution behavior of these polymer/surfactant systems.
Abstract: We synthesized and characterized a series of new polymershydrophobically modified cationic polysaccharidesbased on dextran having pendant N-(2-hydroxypropyl)-N,N-dimethyl-N-alkylammonium chloride groups randomly distributed along the polymer backbone. These polymers are good candidates for studying the hydrophobic effect on polymer/surfactant association. In previous papers we reported their interactions with oppositely charged surfactants. For further insight into the relative importance of the hydrophobic interaction in the association process now we studied the thermodynamics of the interaction of these hydrophobically modified polymers with surfactants of the same charge (DMRX/CnTAC) by isothermal titration calorimetry (ITC). In order to try to discriminate the solution behavior of these polymer/surfactant systems, we analyzed separately the interaction of unmodified dextran with ionic surfactants and the interactions between the corresponding cationic surfactants. The interaction enthalpies for DMRX/...

25 citations

Journal ArticleDOI
TL;DR: The data demonstrate that EVs are not the only relevant players among the parasite exogenous products, and opens new avenues to the comprehension of Leishmania infectious process.
Abstract: The use of secretion pathways for effector molecule delivery by microorganisms is a trademark of pathogenesis. Leishmania extracellular vesicles (EVs) were shown to have significant immunomodulatory potential. Still, they will act in conjunction with other released parasite-derived products that might modify the EVs effects. Notwithstanding, the immunomodulatory properties of these non-vesicular components and their influence in the infectious process remains unknown. To address this, we explored both in vitro and in vivo the immunomodulatory potential of promastigotes extracellular material (EXO), obtained as a whole or separated in two different fractions: EVs or vesicle depleted EXO (VDE). Using an air pouch model, we observed that EVs and VDE induced a dose-dependent cell recruitment profile different from the one obtained with parasites, attracting significantly fewer neutrophils and more dendritic cells (DCs). Additionally, when we co-inoculated parasites with extracellular products a drop in cell recruitment was observed. Moreover, in vitro, while VDE (but not EVs) downregulated the expression of DCs and macrophages activation markers, both products were able to diminish the responsiveness of these cells to LPS. Finally, the presence of Leishmania infantum extracellular products in the inoculum promoted a dose-dependent infection potentiation in vivo, highlighting their relevance for the infectious process. In conclusion, our data demonstrate that EVs are not the only relevant players among the parasite exogenous products. This, together with the dose-dependency observed, opens new avenues to the comprehension of Leishmania infectious process. The approach presented here should be exploited to revisit existing data and considered for future studies in other infection models.

24 citations

Journal ArticleDOI
TL;DR: A correlation between zeta potential and cell viability is supported which seem to indicate the possibility to use it as a viability predictor for the effects of heavy metals toxicity.
Abstract: Zeta potential of Planctomycetes was evaluated under different environmental conditions and correlated to cell viability. Phylogenetically distinct strains of the Planctomycetes presented different negative zeta potential values. More negative values were associated with Rhodopirellula spp. and related to the great amount of fimbriae in these species. Milli-Q water was chosen as the best dispersion media to perform the measurements. Zeta potential increased with ionic strength and varied with pH. In the physiological range of pH 5.0–9, zeta potential remained low and Rhodopirellula sp. strain LF2 cells were viable. Out of this range, zeta potential increased significantly and viability decreased. The effect on zeta potential of arsenic, cadmium, chromium, copper, lead, nickel, and zinc was assessed in Rhodopirellula sp. strain LF2. Zeta potential increased with increasing toxicity of the heavy metals in a dose–response way. This result was confirmed by the results observed for Rhodopirellulabaltica strain SH1 under copper toxicity. Lead was the most toxic metal and zinc was the least toxic as observed by zeta potential and viability. The results support a correlation between zeta potential and cell viability which seem to indicate the possibility to use it as a viability predictor for the effects of heavy metals toxicity.

23 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A wide discussion about preparation methods, advantages, disadvantages and applications of LNPs is presented by focusing on SLNs and NLCs, two major types of Lipid-based nanoparticles.
Abstract: Lipid nanoparticles (LNPs) have attracted special interest during last few decades. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are two major types of Lipid-based nanoparticles. SLNs were developed to overcome the limitations of other colloidal carriers, such as emulsions, liposomes and polymeric nanoparticles because they have advantages like good release profile and targeted drug delivery with excellent physical stability. In the next generation of the lipid nanoparticle, NLCs are modified SLNs which improve the stability and capacity loading. Three structural models of NLCs have been proposed. These LNPs have potential applications in drug delivery field, research, cosmetics, clinical medicine, etc. This article focuses on features, structure and innovation of LNPs and presents a wide discussion about preparation methods, advantages, disadvantages and applications of LNPs by focusing on SLNs and NLCs.

649 citations

Journal ArticleDOI
TL;DR: The understanding of the nanostructured lipid carriers (NLC)-based formulations has improved with continuing research recently, and the result has seen an increase in the use of these in the clinical setting.

460 citations

Journal ArticleDOI
TL;DR: The aim of this article is to review the advantages and limitations of these delivery systems based on the route of administration and to emphasis the effectiveness of such formulations.
Abstract: During the recent years, more attentions have been focused on lipid base drug delivery system to overcome some limitations of conventional formulations. Among these delivery systems solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are promising delivery systems due to the ease of manufacturing processes, scale up capability, biocompatibility, and also biodegradability of formulation constituents and many other advantages which could be related to specific route of administration or nature of the materials are to be loaded to these delivery systems. The aim of this article is to review the advantages and limitations of these delivery systems based on the route of administration and to emphasis the effectiveness of such formulations.

396 citations

Journal ArticleDOI
TL;DR: A panoramic view of current exosome isolation techniques is provided, providing perspectives toward the development of novel approaches for high-efficient exosomes isolation from various types of biological matrices.
Abstract: Exosomes are small extracellular vesicles with diameters of 30-150 nm. In both physiological and pathological conditions, nearly all types of cells can release exosomes, which play important roles in cell communication and epigenetic regulation by transporting crucial protein and genetic materials such as miRNA, mRNA, and DNA. Consequently, exosome-based disease diagnosis and therapeutic methods have been intensively investigated. However, as in any natural science field, the in-depth investigation of exosomes relies heavily on technological advances. Historically, the two main technical hindrances that have restricted the basic and applied researches of exosomes include, first, how to simplify the extraction and improve the yield of exosomes and, second, how to effectively distinguish exosomes from other extracellular vesicles, especially functional microvesicles. Over the past few decades, although a standardized exosome isolation method has still not become available, a number of techniques have been established through exploration of the biochemical and physicochemical features of exosomes. In this work, by comprehensively analyzing the progresses in exosome separation strategies, we provide a panoramic view of current exosome isolation techniques, providing perspectives toward the development of novel approaches for high-efficient exosome isolation from various types of biological matrices. In addition, from the perspective of exosome-based diagnosis and therapeutics, we emphasize the issue of quantitative exosome and microvesicle separation.

386 citations

Journal ArticleDOI
TL;DR: This work investigates publication frequencies on exosomes over the past 10 years, and reviews recent clinical studies on liquid biopsy of exosome in the fields of oncology, pregnancy disorders, cardiovascular diseases, and organ transplantation.
Abstract: Liquid biopsy refers to the sampling and molecular analysis of the biofluids of circulating tumor cells, extracellular vesicles, nucleic acids, and so forth. Exosomes are small extracellular vesicles with sizes between 30–150 nm. They are secreted by multivesicular bodies through exocytosis in live cells and can participate in intercellular communication due to their contents, including nucleic acids, proteins, and lipids. Herein, we investigate publication frequencies on exosomes over the past 10 years, and review recent clinical studies on liquid biopsy of exosomes in the fields of oncology, pregnancy disorders, cardiovascular diseases, and organ transplantation. We also describe the advantages of exosomes as an effective liquid biopsy tool and the progression of exosome extraction methods. Finally, we depict the commercial development of exosome research and discuss the future role of exosomes in liquid biopsy.

326 citations