scispace - formally typeset
Search or ask a question
Author

Jose E. Abdenur

Bio: Jose E. Abdenur is an academic researcher from University of California, Irvine. The author has contributed to research in topics: Medicine & Newborn screening. The author has an hindex of 29, co-authored 60 publications receiving 2895 citations. Previous affiliations of Jose E. Abdenur include Children's Hospital of Orange County & Boston Children's Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: An unprecedented level of cooperation and collaboration has allowed the objective definition of cutoff target ranges for 114 markers to be applied to newborn screening of rare metabolic disorders.

303 citations

Journal ArticleDOI
TL;DR: In this article, the exons and flanking intron region from approximately 350 patients displaying a phenotype consistent with inherited mitochondrial disease and found informative mutations in 61 (17%) of them.
Abstract: Mutations in the POLG gene have emerged as one of the most common causes of inherited mitochondrial disease in children and adults. They are responsible for a heterogeneous group of at least 6 major phenotypes of neurodegenerative disease that include: 1) childhood Myocerebrohepatopathy Spectrum disorders (MCHS), 2) Alpers syndrome, 3) Ataxia Neuropathy Spectrum (ANS) disorders, 4) Myoclonus Epilepsy Myopathy Sensory Ataxia (MEMSA), 5) autosomal recessive Progressive External Ophthalmoplegia (arPEO), and 6) autosomal dominant Progressive External Ophthalmoplegia (adPEO). Due to the clinical heterogeneity, time-dependent evolution of symptoms, overlapping phenotypes, and inconsistencies in muscle pathology findings, definitive diagnosis relies on the molecular finding of deleterious mutations. We sequenced the exons and flanking intron region from approximately 350 patients displaying a phenotype consistent with POLG related mitochondrial disease and found informative mutations in 61 (17%). Two mutant alleles were identified in 31 unrelated index patients with autosomal recessive POLG-related disorders. Among them, 20 (67%) had Alpers syndrome, 4 (13%) had arPEO, and 3 (10%) had ANS. In addition, 30 patients carrying one altered POLG allele were found. A total of 25 novel alterations were identified, including 6 null mutations. We describe the predicted structural/functional and clinical importance of the previously unreported missense variants and discuss their likelihood of being pathogenic. In conclusion, sequence analysis allows the identification of mutations responsible for POLG-related disorders and, in most of the autosomal recessive cases where two mutant alleles are found in trans, finding deleterious mutations can provide an unequivocal diagnosis of the disease.

269 citations

Journal ArticleDOI
TL;DR: Evidence is presented that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG, and knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-GG.
Abstract: Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG.

194 citations

Journal ArticleDOI
TL;DR: CSF neurotransmitters profile is highly indicative for the diagnosis of aromatic l-amino acid decarboxylase deficiency, and treatment options are limited, in many cases not beneficial, and prognosis is uncertain.
Abstract: OBJECTIVE: To describe the current treatment; clinical, biochemical, and molecular findings; and clinical follow-up of patients with aromatic l-amino acid decarboxylase (AADC) deficiency. METHOD: Clinical and biochemical data of 78 patients with AADC deficiency were tabulated in a database of pediatric neurotransmitter disorders (JAKE). A total of 46 patients have been previously reported; 32 patients are described for the first time. RESULTS: In 96% of AADC-deficient patients, symptoms (hypotonia 95%, oculogyric crises 86%, and developmental retardation 63%) became clinically evident during infancy or childhood. Laboratory diagnosis is based on typical CSF markers (low homovanillic acid, 5-hydroxyindoleacidic acid, and 3-methoxy-4-hydroxyphenolglycole, and elevated 3-O-methyl-l-dopa, l-dopa, and 5-hydroxytryptophan), absent plasma AADC activity, or elevated urinary vanillactic acid. A total of 24 mutations in the DDC gene were detected in 49 patients (8 reported for the first time: p.L38P, p.Y79C, p.A110Q, p.G123R, p.I42fs, c.876G>A, p.R412W, p.I433fs) with IVS6+ 4A>T being the most common one (allele frequency 45%). CONCLUSION: Based on clinical symptoms, CSF neurotransmitters profile is highly indicative for the diagnosis of aromatic l-amino acid decarboxylase deficiency. Treatment options are limited, in many cases not beneficial, and prognosis is uncertain. Only 15 patients with a relatively mild form clearly improved on a combined therapy with pyridoxine (B6)/pyridoxal phosphate, dopamine agonists, and monoamine oxidase B inhibitors.

181 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A systematic review of studies reporting LEDs yielded a standardized LED for each drug, providing a useful tool to express dose intensity of different antiparkinsonian drug regimens on a single scale.
Abstract: Interpretation of clinical trials comparing different drug regimens for Parkinson's disease (PD) is complicated by the different dose intensities used: higher doses of levodopa and, possibly, other drugs produce better symptomatic control but more late complications. To address this problem, conversion factors have been calculated for antiparkinsonian drugs that yield a total daily levodopa equivalent dose (LED). LED estimates vary, so we undertook a systematic review of studies reporting LEDs to provide standardized formulae. Electronic database and hand searching of references identified 56 primary reports of LED estimates. Data were extracted and the mean and modal LEDs calculated. This yielded a standardized LED for each drug, providing a useful tool to express dose intensity of different antiparkinsonian drug regimens on a single scale. Using these conversion formulae to report LEDs would improve the consistency of reporting and assist the interpretation of clinical trials comparing different PD medications.

3,379 citations

Journal ArticleDOI
TL;DR: The analyses show that the blood cells of more than 2% of individuals contain mutations that may represent premalignant events that cause clonal hematopoietic expansion, and several recurrently mutated genes that may be disease initiators are identified.
Abstract: Several genetic alterations characteristic of leukemia and lymphoma have been detected in the blood of individuals without apparent hematological malignancies. The Cancer Genome Atlas (TCGA) provides a unique resource for comprehensive discovery of mutations and genes in blood that may contribute to the clonal expansion of hematopoietic stem/progenitor cells. Here, we analyzed blood-derived sequence data from 2,728 individuals from TCGA and discovered 77 blood-specific mutations in cancer-associated genes, the majority being associated with advanced age. Remarkably, 83% of these mutations were from 19 leukemia and/or lymphoma-associated genes, and nine were recurrently mutated (DNMT3A, TET2, JAK2, ASXL1, TP53, GNAS, PPM1D, BCORL1 and SF3B1). We identified 14 additional mutations in a very small fraction of blood cells, possibly representing the earliest stages of clonal expansion in hematopoietic stem cells. Comparison of these findings to mutations in hematological malignancies identified several recurrently mutated genes that may be disease initiators. Our analyses show that the blood cells of more than 2% of individuals (5-6% of people older than 70 years) contain mutations that may represent premalignant events that cause clonal hematopoietic expansion.

1,421 citations

Journal ArticleDOI
TL;DR: Recon 2, a community-driven, consensus 'metabolic reconstruction', is described, which is the most comprehensive representation of human metabolism that is applicable to computational modeling and has improved topological and functional features.
Abstract: Multiple models of human metabolism have been reconstructed, but each represents only a subset of our knowledge. Here we describe Recon 2, a community-driven, consensus 'metabolic reconstruction', which is the most comprehensive representation of human metabolism that is applicable to computational modeling. Compared with its predecessors, the reconstruction has improved topological and functional features, including ~2× more reactions and ~1.7× more unique metabolites. Using Recon 2 we predicted changes in metabolite biomarkers for 49 inborn errors of metabolism with 77% accuracy when compared to experimental data. Mapping metabolomic data and drug information onto Recon 2 demonstrates its potential for integrating and analyzing diverse data types. Using protein expression data, we automatically generated a compendium of 65 cell type–specific models, providing a basis for manual curation or investigation of cell-specific metabolic properties. Recon 2 will facilitate many future biomedical studies and is freely available at http://humanmetabolism.org/.

1,002 citations