scispace - formally typeset
Search or ask a question
Author

José E. Manautou

Bio: José E. Manautou is an academic researcher from University of Connecticut. The author has contributed to research in topics: Acetaminophen & Liver injury. The author has an hindex of 37, co-authored 93 publications receiving 4077 citations. Previous affiliations of José E. Manautou include University of Arizona & University of Buenos Aires.


Papers
More filters
Journal ArticleDOI
TL;DR: Research of Nrf2 has opened up new opportunities in understanding how antioxidant defense pathways are regulated, how oxidative stress contributes to disease progression and may serve as a novel target for designing therapies to prevent and treat diseases in which oxidative stress is implicated.
Abstract: Transcription factor NF-E2-related factor 2 (Nrf2) belongs to the basic region-leucine zipper family and is activated in response to electrophiles and reactive oxygen species. Nrf2 coordinately regulates the constitutive and inducible transcription of a wide array of genes involved in drug metabolism, detoxification, and antioxidant defenses. During periods of oxidative stress, Nrf2 is released from sequestration in the cytoplasm and translocates to the nucleus. Nrf2 binds antioxidant response elements (AREs) in the regulatory regions of target genes and activates transcription. Genetically modified mice lacking Nrf2 serve as a useful tool for identifying new ARE-regulated genes and assessing the ability of Nrf2 to confer protection against a variety of pathologies in numerous organs including the liver, intestine, lung, skin, and nervous system. With regards to the liver and gastrointestinal tract, Nrf2 knockout mice are more susceptible to acetaminophen-induced hepatocellular injury, benzo[a]pyrene-induced tumor formation and Fas- and TNFalpha -mediated hepatocellular apoptosis. The higher sensitivity of Nrf2 knockout mice to chemical toxicity is due in part to reduced basal and inducible expression of detoxification enzymes. Nrf2 may also be important in protecting against liver fibrosis, gallstone development, and formation of aberrant crypt foci. Research of Nrf2 has opened up new opportunities in understanding how antioxidant defense pathways are regulated, how oxidative stress contributes to disease progression and may serve as a novel target for designing therapies to prevent and treat diseases in which oxidative stress is implicated.

265 citations

Journal ArticleDOI
TL;DR: A comprehensive, up-to-date overview of hepatic toxicity as well as a thorough review of both toxic and beneficial effects of APAP in brain are presented.

245 citations

Journal ArticleDOI
TL;DR: Research aimed at elucidating the molecular mechanism of the pathogenesis of chemical-induced liver diseases is fundamental for preventing or devising new modalities of treatment for liver injury by chemicals.
Abstract: The liver is necessary for survival. Its strategic localisation, blood flow and prominent role in the metabolism of xenobiotics render this organ particularly susceptible to injury by chemicals to which we are ubiquitously exposed. The pathogenesis of most chemical-induced liver injuries is initiated by the metabolic conversion of chemicals into reactive intermediate species, such as electrophilic compounds or free radicals, which can potentially alter the structure and function of cellular macromolecules. Many reactive intermediate species can produce oxidative stress, which can be equally detrimental to the cell. When protective defences are overwhelmed by excess toxicant insult, the effects of reactive intermediate species lead to deregulation of cell signalling pathways and dysfunction of biomolecules, leading to failure of target organelles and eventual cell death. A myriad of genetic factors determine the susceptibility of specific individuals to chemical-induced liver injury. Environmental factors, lifestyle choices and pre-existing pathological conditions also have roles in the pathogenesis of chemical liver injury. Research aimed at elucidating the molecular mechanism of the pathogenesis of chemical-induced liver diseases is fundamental for preventing or devising new modalities of treatment for liver injury by chemicals.

204 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a brief overview of mechanisms of siRNA action, physiological barriers to its delivery and activity, and the most common chemical modifications and delivery platforms used to overcome these barriers.

165 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Observations suggest Nrf2 directs metabolic reprogramming during stress, which would enable the factor to orchestrate adaptive responses to diverse forms of stress.

1,482 citations

Journal ArticleDOI
TL;DR: The switching on and off of Nrf2 protects cells against free radical damage, prevents apoptosis, and promotes cell survival, and is a mechanism of critical importance for cellular protection and cell survival.

1,336 citations

Journal ArticleDOI
TL;DR: The different modes of regulation of Nrf2 activity are reviewed and the current knowledge of NRF2-mediated transcriptional control is reviewed to provide insight into mechanisms of disease and instruct new treatment strategies.
Abstract: Significance: Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that coordinates the basal and stress-inducible activation of a vast array of cytoprotective genes. Unders...

1,114 citations

Journal ArticleDOI
TL;DR: It is concluded that the most predictable way to increase a specific long-chain n-3 fatty acid in plasma, tissues, or human milk is to supplement with the fatty acid of interest.

1,113 citations

Journal ArticleDOI
TL;DR: The members of the Keap1/Nrf2/ARE signal pathway and its downstream genes, the effects of this pathway on animal models of inflammatory diseases, and crosstalk with the NF-κB pathway are discussed.

1,086 citations