scispace - formally typeset
Search or ask a question
Author

José Elguero

Bio: José Elguero is an academic researcher from Spanish National Research Council. The author has contributed to research in topics: Hydrogen bond & Tautomer. The author has an hindex of 69, co-authored 1346 publications receiving 29017 citations. Previous affiliations of José Elguero include Université Paul Cézanne Aix-Marseille III & Complutense University of Madrid.
Topics: Hydrogen bond, Tautomer, Molecule, Ab initio, Pyrazole


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the topological and energetic properties of the electron density distribution ρ(r) of isolated pairwise H⋯F interaction have been theoretically calculated at several geometries and represented against the corresponding internuclear distances.
Abstract: The topological and energetic properties of the electron density distribution ρ(r) of the isolated pairwise H⋯F interaction have been theoretically calculated at several geometries (0.8

1,395 citations

Journal ArticleDOI
TL;DR: In this paper, the formation of low-barrier hydrogen bonds between ylides and different neutral molecules was studied, and the analysis of the protonation energies and the optimized geometries, interaction energies, and characteristics of the electron density of the complexes showed that these ylsides are very good HB acceptors, forming stable complexes even with weak HB donors.
Abstract: The hydrogen bond (HB) basicity of a series of ylides containing nitrogen, oxygen, or carbon as heavy atoms, as well as the influence of the formation of the HB complexes on their structure, has been studied. In addition, in this paper we propose the formation of some rather strong HBs (that could be considered low-barrier hydrogen bonds, LBHBs) between ylides and different neutral molecules. The ylides chosen for the study were H3N+−N-H, Me3N+−N-H, H2O+−N-H, Me2O+−N-H, H2O+−O-, Me2O+−O-, and Me3N+−C-H2. As HB donors, classical donors such as HF, HCN, and HCCH were used. The analysis of the protonation energies of the ylides and the optimized geometries, interaction energies, and characteristics of the electron density of the complexes shows that these ylides are very good HB acceptors, forming stable complexes even with weak HB donors. With strong donors, when the proton transfer did not take place, very strong HBs were formed with quite large interaction energies and very short HB distances which could ...

1,232 citations

Book
01 Jan 1976

508 citations

Journal ArticleDOI
TL;DR: The complexes formed by a variety of anions with perfluoro derivatives of benzene, naphthalene, pyridine, thiophene, and furan have been calculated using DFT (B3LYP/6-31++G**) and MP2 and the AIM analysis of the electron density shows a varieties of topologies depending on the aromatic system considered.
Abstract: The complexes formed by a variety of anions with perfluoro derivatives of benzene, naphthalene, pyridine, thiophene, and furan have been calculated using DFT (B3LYP/6-31++G**) and MP2 (MP2/6-31++G** and MP2/6-311++G**) ab initio methods. The minimum structures show the anion interacting with the π-cloud of the aromatic compounds. The interaction energies obtained range between −8 and −19 kcal mol-1. The results obtained at the MP2/6-31++G** and MP2/6-311++G** levels are similar. However, the B3LYP/6-31++G** results provide longer interaction distances and smaller interaction energies than do the MP2 results. The interaction energies have been partitioned using an electrostatic, polarization, and van der Waals scheme. The AIM analysis of the electron density shows a variety of topologies depending on the aromatic system considered.

458 citations

Journal ArticleDOI
TL;DR: In this paper, the local kinetic G( r ), potential V( r ), and total energy densities, calculated at the critical points of 37 H⋯F closed-shell interactions by quantum mechanical methods, have been compared to their estimated values obtained by using an approximate evaluation of G(r ) and the local form of the virial theorem.

367 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a meta-modelling procedure called "Continuum Methods within MD and MC Simulations 3072", which automates the very labor-intensive and therefore time-heavy and expensive process of integrating discrete and continuous components into a discrete-time model.
Abstract: 6.2.2. Definition of Effective Properties 3064 6.3. Response Properties to Magnetic Fields 3066 6.3.1. Nuclear Shielding 3066 6.3.2. Indirect Spin−Spin Coupling 3067 6.3.3. EPR Parameters 3068 6.4. Properties of Chiral Systems 3069 6.4.1. Electronic Circular Dichroism (ECD) 3069 6.4.2. Optical Rotation (OR) 3069 6.4.3. VCD and VROA 3070 7. Continuum and Discrete Models 3071 7.1. Continuum Methods within MD and MC Simulations 3072

13,286 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
TL;DR: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long
Abstract: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long

5,389 citations

Journal ArticleDOI
TL;DR: The hydrogen bond is the most important of all directional intermolecular interactions, operative in determining molecular conformation, molecular aggregation, and the function of a vast number of chemical systems ranging from inorganic to biological.
Abstract: The hydrogen bond is the most important of all directional intermolecular interactions. It is operative in determining molecular conformation, molecular aggregation, and the function of a vast number of chemical systems ranging from inorganic to biological. Research into hydrogen bonds experienced a stagnant period in the 1980s, but re-opened around 1990, and has been in rapid development since then. In terms of modern concepts, the hydrogen bond is understood as a very broad phenomenon, and it is accepted that there are open borders to other effects. There are dozens of different types of X-H.A hydrogen bonds that occur commonly in the condensed phases, and in addition there are innumerable less common ones. Dissociation energies span more than two orders of magnitude (about 0.2-40 kcal mol(-1)). Within this range, the nature of the interaction is not constant, but its electrostatic, covalent, and dispersion contributions vary in their relative weights. The hydrogen bond has broad transition regions that merge continuously with the covalent bond, the van der Waals interaction, the ionic interaction, and also the cation-pi interaction. All hydrogen bonds can be considered as incipient proton transfer reactions, and for strong hydrogen bonds, this reaction can be in a very advanced state. In this review, a coherent survey is given on all these matters.

5,153 citations