scispace - formally typeset
Search or ask a question
Author

José-Luis Sancho-Gómez

Bio: José-Luis Sancho-Gómez is an academic researcher from Universidad Politécnica de Cartagena. The author has contributed to research in topics: Multi-task learning & Missing data. The author has an hindex of 11, co-authored 61 publications receiving 1056 citations. Previous affiliations of José-Luis Sancho-Gómez include Ohio State University & University of Cartagena.


Papers
More filters
Journal ArticleDOI
TL;DR: The aim of this work is to analyze the missing data problem in pattern classification tasks, and to summarize and compare some of the well-known methods used for handling missing values.
Abstract: Pattern classification has been successfully applied in many problem domains, such as biometric recognition, document classification or medical diagnosis. Missing or unknown data are a common drawback that pattern recognition techniques need to deal with when solving real-life classification tasks. Machine learning approaches and methods imported from statistical learning theory have been most intensively studied and used in this subject. The aim of this work is to analyze the missing data problem in pattern classification tasks, and to summarize and compare some of the well-known methods used for handling missing values.

625 citations

Journal ArticleDOI
TL;DR: This article proposes a novel KNN imputation procedure using a feature-weighted distance metric based on mutual information (MI), which provides a missing data estimation aimed at solving the classification task.

193 citations

Journal ArticleDOI
TL;DR: A fully automatic segmentation technique based on Machine Learning and Statistical Pattern Recognition to measure IMT from ultrasound CCA images is proposed and the concepts of Auto-Encoders (AE) and Deep Learning have been included in the classification strategy.

62 citations

Journal ArticleDOI
TL;DR: An effective image segmentation method for the IMT measurement in an automatic way is proposed, which is posed as a pattern recognition problem, and a combination of artificial neural networks has been trained to solve this task.
Abstract: Atherosclerosis is the leading underlying pathologic process that results in cardiovascular diseases, which represents the main cause of death and disability in the world. The atherosclerotic process is a complex degenerative condition mainly affecting the medium- and large-size arteries, which begins in childhood and may remain unnoticed during decades. The intima-media thickness (IMT) of the common carotid artery (CCA) has emerged as one of the most powerful tool for the evaluation of preclinical atherosclerosis. IMT is measured by means of B-mode ultrasound images, which is a non-invasive and relatively low-cost technique. This paper proposes an effective image segmentation method for the IMT measurement in an automatic way. With this purpose, segmentation is posed as a pattern recognition problem, and a combination of artificial neural networks has been trained to solve this task. In particular, multi-layer perceptrons trained under the scaled conjugate gradient algorithm have been used. The suggested approach is tested on a set of 60 longitudinal ultrasound images of the CCA by comparing the automatic segmentation with four manual tracings. Moreover, the intra- and inter-observer errors have also been assessed. Despite of the simplicity of our approach, several quantitative statistical evaluations have shown its accuracy and robustness.

54 citations

Journal ArticleDOI
TL;DR: This paper proposes an MTL-based method for training and operating a modified Multi-Layer Perceptron (MLP) architecture to work in incomplete data contexts and achieves a balance between both classification and imputation by exploiting the advantages of MTL.
Abstract: Datasets with missing values are frequent in real-world classification problems. It seems obvious that imputation of missing values can be considered as a series of secondary tasks, while classification is the main purpose of any machine dealing with these datasets. Consequently, Multi-Task Learning (MTL) schemes offer an interesting alternative approach to solve missing data problems. In this paper, we propose an MTL-based method for training and operating a modified Multi-Layer Perceptron (MLP) architecture to work in incomplete data contexts. The proposed approach achieves a balance between both classification and imputation by exploiting the advantages of MTL. Extensive experimental comparisons with well-known imputation algorithms show that this approach provides excellent results. The method is never worse than the traditional algorithms - an important robustness property - and, also, it clearly outperforms them in several problems.

43 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

01 Jan 2002

9,314 citations

Journal ArticleDOI
TL;DR: It is concluded that multiple Imputation for Nonresponse in Surveys should be considered as a legitimate method for answering the question of why people do not respond to survey questions.
Abstract: 25. Multiple Imputation for Nonresponse in Surveys. By D. B. Rubin. ISBN 0 471 08705 X. Wiley, Chichester, 1987. 258 pp. £30.25.

3,216 citations

Journal ArticleDOI

3,152 citations

Journal ArticleDOI
TL;DR: This paper considered four distinct medical imaging applications in three specialties involving classification, detection, and segmentation from three different imaging modalities, and investigated how the performance of deep CNNs trained from scratch compared with the pre-trained CNNs fine-tuned in a layer-wise manner.
Abstract: Training a deep convolutional neural network (CNN) from scratch is difficult because it requires a large amount of labeled training data and a great deal of expertise to ensure proper convergence. A promising alternative is to fine-tune a CNN that has been pre-trained using, for instance, a large set of labeled natural images. However, the substantial differences between natural and medical images may advise against such knowledge transfer. In this paper, we seek to answer the following central question in the context of medical image analysis: Can the use of pre-trained deep CNNs with sufficient fine-tuning eliminate the need for training a deep CNN from scratch? To address this question, we considered four distinct medical imaging applications in three specialties (radiology, cardiology, and gastroenterology) involving classification, detection, and segmentation from three different imaging modalities, and investigated how the performance of deep CNNs trained from scratch compared with the pre-trained CNNs fine-tuned in a layer-wise manner. Our experiments consistently demonstrated that 1) the use of a pre-trained CNN with adequate fine-tuning outperformed or, in the worst case, performed as well as a CNN trained from scratch; 2) fine-tuned CNNs were more robust to the size of training sets than CNNs trained from scratch; 3) neither shallow tuning nor deep tuning was the optimal choice for a particular application; and 4) our layer-wise fine-tuning scheme could offer a practical way to reach the best performance for the application at hand based on the amount of available data.

2,294 citations