scispace - formally typeset
Search or ask a question
Author

José-María Cabrera

Bio: José-María Cabrera is an academic researcher from Universidad Michoacana de San Nicolás de Hidalgo. The author has contributed to research in topics: Dynamic recrystallization & Grain size. The author has an hindex of 34, co-authored 189 publications receiving 4064 citations. Previous affiliations of José-María Cabrera include Polytechnic University of Puerto Rico & ETSEIB.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the aging characteristics of Inconel 718 have been studied and the effect of the particles on the deformation mechanism and particularly on the softening mechanism of softening mechanisms.

352 citations

Journal ArticleDOI
TL;DR: In this paper, the authors derived the flow stress of a 17-4 PH stainless steel during hot compression testing using the classical hyperbolic sine equation and the self-diffusion activation energy.

237 citations

Journal ArticleDOI
TL;DR: In this article, the hot deformation behavior of a medium carbon microalloyed steel was studied using the hot compression flow curves corresponding to the temperature range of 850-1150°C under strain rates from 0.0001 to 3 s −1.
Abstract: The hot deformation behavior of a medium carbon microalloyed steel was studied using the hot compression flow curves corresponding to the temperature range of 850–1150 °C under strain rates from 0.0001 to 3 s −1 . A step-by-step procedure for data analysis in hot deformation was also given. The work hardening rate versus stress curves were used to reveal if dynamic recrystallization (DRX) occurred. The application of constitutive equations to determine the hot working constants of this material was critically discussed. Furthermore, the effect of Zener–Hollomon parameter ( Z ) on the characteristic points of flow curves was studied using the power law relation. The deformation activation energy of this steel was determined as 394 kJ/mol and the normalized critical stress and strain for initiation of DRX were found to be 0.89 and 0.62, respectively. Some behaviors were also compared to other steels.

222 citations

Journal ArticleDOI
TL;DR: In this paper, the microstructural evolution of a 304 H austenitic stainless steel subjected to hot compression was studied by the electron backscattered diffraction (EBSD) technique.
Abstract: The microstructural evolution of a 304 H austenitic stainless steel subjected to hot compression was studied by the electron backscattered diffraction (EBSD) technique. Detailed data about the boundaries, coincidence site lattice (CSL) relationships and grain size were acquired from the orientation imaging microscopy (OIM) maps. It was found that twins play an important role in the nucleation and growth of dynamic recrystallization (DRX) during hot deformation. Moreover, the conventional discontinuous DRX (DDRX) was found to be in charge of grain refinement reached under the testing conditions studied. Furthermore, the recrystallized fraction (X) was determined from the grain average misorientation (GAM) distribution based on the threshold value of 1.55°. The frequency of high angle boundaries showed a direct relationship with X. A time exponent of 1.11 was determined from Avrami analysis, which was related to the observed single-peak behavior in the stress–strain flow curves.

196 citations

Journal ArticleDOI
TL;DR: In this article, the effects of strain, strain rate and deformation temperature on the subgrain structures, local and cumulative misorientations and twinning phenomena of an IN718 superalloy were investigated.
Abstract: The hot deformation behavior of an IN718 superalloy was studied by isothermal compression tests under the deformation temperature range of 950–1100 °C and strain rate range of 0.001–1 s−1 up to true strains of 0.05, 0.2, 0.4 and 0.7. Electron backscattered diffraction (EBSD) technique was employed to investigate systematically the effects of strain, strain rate and deformation temperature on the subgrain structures, local and cumulative misorientations and twinning phenomena. The results showed that the occurrence of dynamic recrystallization (DRX) is promoted by increasing strain and deformation temperature and decreasing strain rate. The microstructural changes showed that discontinuous dynamic recrystallization (DDRX), characterized by grain boundary bulging, is the dominant nucleation mechanism in the early stages of deformation in which DRX nucleation occurs by twining behind the bulged areas. Twin boundaries of nuclei lost their ∑3 character with further deformation. However, many simple and multiple twins can be also regenerated during the growth of grains. The results showed that continuous dynamic recrystallization (CDRX) is promoted at higher strains and large strain rates, and lower temperatures, indicating that under certain conditions both DDRX and CDRX can occur simultaneously during the hot deformation of IN718.

162 citations


Cited by
More filters
Reference EntryDOI
31 Oct 2001
TL;DR: The American Society for Testing and Materials (ASTM) as mentioned in this paper is an independent organization devoted to the development of standards for testing and materials, and is a member of IEEE 802.11.
Abstract: The American Society for Testing and Materials (ASTM) is an independent organization devoted to the development of standards.

3,792 citations

01 Jun 2005

3,154 citations

Journal ArticleDOI
Abstract: This article presents an overview of the developments in stainless steels made since the 1990s. Some of the new applications that involve the use of stainless steel are also introduced. A brief introduction to the various classes of stainless steels, their precipitate phases and the status quo of their production around the globe is given first. The advances in a variety of subject areas that have been made recently will then be presented. These recent advances include (1) new findings on the various precipitate phases (the new J phase, new orientation relationships, new phase diagram for the Fe–Cr system, etc.); (2) new suggestions for the prevention/mitigation of the different problems and new methods for their detection/measurement and (3) new techniques for surface/bulk property enhancement (such as laser shot peening, grain boundary engineering and grain refinement). Recent developments in topics like phase prediction, stacking fault energy, superplasticity, metadynamic recrystallisation and the calculation of mechanical properties are introduced, too. In the end of this article, several new applications that involve the use of stainless steels are presented. Some of these are the use of austenitic stainless steels for signature authentication (magnetic recording), the utilisation of the cryogenic magnetic transition of the sigma phase for hot spot detection (the Sigmaplugs), the new Pt-enhanced radiopaque stainless steel (PERSS) coronary stents and stainless steel stents that may be used for magnetic drug targeting. Besides recent developments in conventional stainless steels, those in the high-nitrogen, low-Ni (or Ni-free) varieties are also introduced. These recent developments include new methods for attaining very high nitrogen contents, new guidelines for alloy design, the merits/demerits associated with high nitrogen contents, etc.

1,668 citations

Journal ArticleDOI
TL;DR: The potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications is demonstrated, with austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibiting a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels.
Abstract: Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

1,385 citations