scispace - formally typeset
Search or ask a question
Author

José María Gómez

Bio: José María Gómez is an academic researcher from Complutense University of Madrid. The author has contributed to research in topics: Adsorption & Zeolite. The author has an hindex of 20, co-authored 60 publications receiving 1211 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a mesoporous carbon (MCSG60) was developed using an inexpensive commercial mesophorous silica gel as a template and sucrose as the carbon source.

145 citations

Journal ArticleDOI
TL;DR: In the last decade, there has been an increasing interest in the analysis of energy level spectra and wave functions of nuclei, particles, atoms and other quantum many-body systems by means of statistical methods and random matrix ensembles as mentioned in this paper.

137 citations

Journal ArticleDOI
TL;DR: Using random matrix theory, theoretical expressions are derived that explain without free parameters the universal behavior of the excitation energy fluctuations power spectrum and reproduces to a good approximation the 1/f (1/f(2)) power law characteristic of chaotic (integrable) systems.
Abstract: It was recently conjectured that 1/ƒ noise is a fundamental characteristic of spectral fluctuations in chaotic quantum systems. This conjecture is based on the power spectrum behavior of the excitation energy fluctuations, which is different for chaotic and integrable systems. Using random matrix theory, we derive theoretical expressions that explain without free parameters the universal behavior of the excitation energy fluctuations power spectrum. The theory gives excellent agreement with numerical calculations and reproduces to a good approximation the 1/ƒ (1/ƒ^(2)) power law characteristic of chaotic (integrable) systems. Moreover, the theoretical results are valid for semiclassical systems as well.

93 citations

Journal ArticleDOI
TL;DR: In this article, the adsorption equilibrium isotherms of carbon dioxide, methane and nitrogen on mordenite at three temperatures (279, 293 and 308 K) for pressures up to 2 MPa have been obtained.

92 citations

Journal ArticleDOI
TL;DR: Early cyclosporine withdrawal associated with sirolimus administration is followed by an improvement in renal function, a reduction in the progression of chronic pathologic allograft lesions, and a lower incidence of new cases and severity of CAN during the first year after transplantation.
Abstract: Background. Nephrotoxicity of calcineurin inhibitors (CNIs) is partially responsible for the development of chronic allograft nephropathy (CAN). Sirolimus has demonstrated its potential to substitute for CNIs because it lacks significant nephrotoxicity and shows a short-term immunosuppressive capacity comparable with that of cyclosporine. This results in the maintenance of better renal function when cyclosporine is eliminated, but it has not been demonstrated whether this benefit is associated with an improvement in the pathologic substrate and a reduction in CAN. Methods. We analyzed pretransplant and 1-year renal-allograft biopsies from 64 patients enrolled in a multicenter trial. Patients received cyclosporine and sirolimus during the first 3 months after transplant and were then randomly assigned to continue with cyclosporine or have it withdrawn. Histologic chronic allograft lesions were compared between groups. Results. The percentage of patients in whom chronic pathologic lesions progressed was lower in the group of cyclosporine elimination. Significant differences were observed in chronic interstitial and tubular lesions (70% vs. 40.9% [P<0.05] and 70% vs. 47.8% [P<0.05], respectively), whereas no differences were observed in acute lesions (subclinical rejection). Prevalence of CAN at 1 year was lower in this group, as was the severity and incidence of new cases (P<0.05). Conclusions. Early cyclosporine withdrawal associated with sirolimus administration is followed by an improvement in renal function, a reduction in the progression of chronic pathologic allograft lesions, and a lower incidence of new cases and severity of CAN during the first year after transplantation. This benefit may result in better long-term graft outcome.

73 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the results of the transesterification of sunflower oil with methanol to produce biodiesel using CaO nanoparticles supported on NaX zeolite as catalyst were reported.
Abstract: Biodiesel is produced by the transesterification of oil triglycerides with methanol or ethanol, in the presence of a homogeneous or heterogeneous catalyst. This study aims to report the results of the transesterification of sunflower oil with methanol to produce biodiesel using CaO nanoparticles supported on NaX zeolite as catalyst. The effect of the CaO nanoparticles concentration on the NaX zeolite surface was studied in the range of 5−25 wt %. The transesterification reaction was carried out at reflux temperature of methanol, atmospheric pressure, a reaction time of 6 h, and with a 6:1 molar ratio of methanol to sunflower oil. Catalyst characterization was carried out by X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. It was concluded that methyl esters content is highly influenced by basicity and that the best catalyst was the one holding 16 wt % CaO nanoparticles. The produced biodiesel was 93.5% methyl esters and was found to fulfill the specifications of Europ...

1,687 citations

Journal ArticleDOI
TL;DR: Different treatment methods to treat the textile wastewater have been presented along with cost per unit volume of treated water, and the possible remedial measures to treat different types of effluent generated from each textile operation are recommended.

1,335 citations

Journal ArticleDOI
TL;DR: It was demonstrated that the adsorption plays an important role in the preconcentration of analytes, which can further increase the fluorescent quenching efficiency and be potentially useful in monitoring water quality and treating wastewater.
Abstract: Antibiotics and organic explosives are among the main organic pollutants in wastewater; their detection and removal are quite important but challenging. As a new class of porous materials, metal–organic frameworks (MOFs) are considered as a promising platform for the sensing and adsorption applications. In this work, guided by a topological design approach, two stable isostructural Zr(IV)-based MOFs, Zr6O4(OH)8(H2O)4(CTTA)8/3 (BUT-12, H3CTTA = 5′-(4-carboxyphenyl)-2′,4′,6′-trimethyl-[1,1′:3′,1″-terphenyl]-4,4″-dicarboxylic acid) and Zr6O4(OH)8(H2O)4(TTNA)8/3 (BUT-13, H3TTNA = 6,6′,6″-(2,4,6-trimethylbenzene-1,3,5-triyl)tris(2-naphthoic acid)) with the the-a topological structure constructed by D4h 8-connected Zr6 clusters and D3h 3-connected linkers were designed and synthesized. The two MOFs are highly porous with the Brunauer–Emmett–Teller surface area of 3387 and 3948 m2 g–1, respectively. Particularly, BUT-13 features one of the most porous water-stable MOFs reported so far. Interestingly, these MOFs ...

1,164 citations

Journal ArticleDOI
TL;DR: A growing field of amino acids, vitamins, enzymes, and whole cells adsorbed (immobilized) onto ordered mesoporous silica and carbon molecular sieves has attracted considerable attention over the past few years as discussed by the authors.
Abstract: The encapsulation of enzymes and other proteins into inorganic host materials has attracted considerable attention over the past few years This research has demonstrated that biomolecules immobilized in inorganic matrixes retain their functional characteristics to a large extent These new materials are of interest for applications as (optically based) biosensors and biocatalysts We review the growing field of amino acids, vitamins, enzymes, and whole cells adsorbed (immobilized) onto ordered mesoporous silica and carbon molecular sieves Strategies for the preparation of mesoporous supports and the essential properties of the resulting materials with respect to the envisaged applications are presented Basic effects of the nature of the adsorption and various aspects of the application of these materials as biosensors, bicatalysts, and for drug release are discussed Outlook of potential applications and further challenges are also provided

1,077 citations

Journal Article
TL;DR: In this paper, the authors show that a homogeneous 1D Bose gas with point-like collisional interactions is integrable, and that it is possible to construct a system with many degrees of freedom that does not reach thermal equilibrium even after thousands of collisions.
Abstract: It is a fundamental assumption of statistical mechanics that a closed system with many degrees of freedom ergodically samples all equal energy points in phase space. To understand the limits of this assumption, it is important to find and study systems that are not ergodic, and thus do not reach thermal equilibrium. A few complex systems have been proposed that are expected not to thermalize because their dynamics are integrable. Some nearly integrable systems of many particles have been studied numerically, and shown not to ergodically sample phase space. However, there has been no experimental demonstration of such a system with many degrees of freedom that does not approach thermal equilibrium. Here we report the preparation of out-of-equilibrium arrays of trapped one-dimensional (1D) Bose gases, each containing from 40 to 250 87Rb atoms, which do not noticeably equilibrate even after thousands of collisions. Our results are probably explainable by the well-known fact that a homogeneous 1D Bose gas with point-like collisional interactions is integrable. Until now, however, the time evolution of out-of-equilibrium 1D Bose gases has been a theoretically unsettled issue, as practical factors such as harmonic trapping and imperfectly point-like interactions may compromise integrability. The absence of damping in 1D Bose gases may lead to potential applications in force sensing and atom interferometry.

941 citations