scispace - formally typeset
Search or ask a question
Author

Jose P. Joseph

Bio: Jose P. Joseph is an academic researcher from SRI International. The author has contributed to research in topics: Electroactive polymers & Dielectric elastomers. The author has an hindex of 17, co-authored 26 publications receiving 6814 citations.

Papers
More filters
Journal ArticleDOI
04 Feb 2000-Science
TL;DR: It is shown that prestraining the film further improves the performance of electrical actuators made from films of dielectric elastomers coated on both sides with compliant electrode material.
Abstract: Electrical actuators were made from films of dielectric elastomers (such as silicones) coated on both sides with compliant electrode material. When voltage was applied, the resulting electrostatic forces compressed the film in thickness and expanded it in area, producing strains up to 30 to 40%. It is now shown that prestraining the film further improves the performance of these devices. Actuated strains up to 117% were demonstrated with silicone elastomers, and up to 215% with acrylic elastomers using biaxially and uniaxially prestrained films. The strain, pressure, and response time of silicone exceeded those of natural muscle; specific energy densities greatly exceeded those of other field-actuated materials. Because the actuation mechanism is faster than in other high-strain electroactive polymers, this technology may be suitable for diverse applications.

2,969 citations

Journal ArticleDOI
TL;DR: Electrostrictive polymer (EP) dielectric actuators have been shown to produce 5 to 20 times the effective actuation pressure of conventional air-gap electrostatics at the same electric field strength as mentioned in this paper.
Abstract: The electrostriction of elastomeric polymer dielectrics with compliant electrodes is potentially useful as a small-scale, solid-state actuator technology. Electrostrictive polymer (EP) materials are capable of efficient and fast response with high strains (> 30%), good actuation pressures (up to 1.9 MPa), and high specific energy densities (up to 0.1 J g−1). In this article, the mechanism of electrostriction is shown to be due to the electrostatic attraction of free charges on the electrodes. Although EP actuators are electrostatics based, they are shown to produce 5–20 times the effective actuation pressure of conventional air-gap electrostatics at the same electric field strength. The thin uniform dielectric films necessary for fabrication of EP actuators have been fabricated by techniques such as spin coating, casting, and dipping. A variety of materials and techniques have been used to produce the compliant electrodes, including lift-off stenciling techniques for powdered graphite, selective wetting of ionically conductive polymers, and spray coating of carbon blacks and fibrils in polymeric binders. Prototype actuators have been demonstrated in a variety of configurations such as stretched films, stacks, rolls, tubes, and unimorphs. Potential applications of the technology in areas such as microrobots, sound generators, and displays are discussed in this article.

1,436 citations

Patent
09 Jul 2007
TL;DR: In this paper, the authors proposed a method for fabricating electromechanical devices including one or more electroactive polymers and compliant electrodes that conform to the shape of a polymer.
Abstract: The present invention relates to electroactive polymers that are pre-strained to improve conversion from electrical to mechanical energy. When a voltage is applied to electrodes contacting a pre-strained polymer, the polymer deflects. This deflection may be used to do mechanical work. The pre-strain improves the mechanical response of an electroactive polymer. The present invention also relates to actuators including an electroactive polymer and mechanical coupling to convert deflection of the polymer into mechanical work. The present invention further relates to compliant electrodes that conform to the shape of a polymer. The present invention provides methods for fabricating electromechanical devices including one or more electroactive polymers.

855 citations

Journal ArticleDOI
TL;DR: In this article, a nonlinear, high-strain, Mooney-Rivlin model was used to determine the expected strain response for a given applied field pressure, and it was determined that the electrostatic forces between the free charges on the electrodes are responsible for the observed response.

737 citations

Proceedings ArticleDOI
16 May 1998
TL;DR: A simple model using linear elastic theory can predict EPAM actuator performance from mechanical and electrical material properties and load conditions, and an improved EPAM motor could produce greater specific power and specific torque than could electric motors.
Abstract: Many new robotic and teleoperated applications require a high degree of mobility or dexterity that is difficult to achieve with current actuator technology. Natural muscle is an actuator that has many features, including high energy density, fast speed of response, and large stroke, that are desirable for such applications. The electrostriction of polymer dielectrics with compliant electrodes can be used in electrically controllable, muscle-like actuators. These electrostrictive polymer artificial muscle (EPAM) actuators can produce strains of up to 30% and pressures of up to 1.9 MPa. The measured specific energy achieved with polyurethane and silicone polymers exceeds that of electromagnetic, electrostatic, piezoelectric, and magnetostrictive actuators. A simple model using linear elastic theory can predict EPAM actuator performance from mechanical and electrical material properties and load conditions. A spherical joint for a highly articulated (snake-like) manipulator using EPAM actuator elements has been demonstrated. A rotary motor using EPAM actuator elements has been shown to produce a specific torque of 19 mNm/g and a specific power of 0.1 W/g. An improved EPAM motor could produce greater specific power and specific torque than could electric motors.

231 citations


Cited by
More filters
Journal ArticleDOI
04 Feb 2000-Science
TL;DR: It is shown that prestraining the film further improves the performance of electrical actuators made from films of dielectric elastomers coated on both sides with compliant electrode material.
Abstract: Electrical actuators were made from films of dielectric elastomers (such as silicones) coated on both sides with compliant electrode material. When voltage was applied, the resulting electrostatic forces compressed the film in thickness and expanded it in area, producing strains up to 30 to 40%. It is now shown that prestraining the film further improves the performance of these devices. Actuated strains up to 117% were demonstrated with silicone elastomers, and up to 215% with acrylic elastomers using biaxially and uniaxially prestrained films. The strain, pressure, and response time of silicone exceeded those of natural muscle; specific energy densities greatly exceeded those of other field-actuated materials. Because the actuation mechanism is faster than in other high-strain electroactive polymers, this technology may be suitable for diverse applications.

2,969 citations

Patent
10 Jun 2011
TL;DR: In this article, a surgical stapling device particularly suited for endoscopic procedures is described, which includes a handle assembly and an elongated body extending distally from the handle assembly.
Abstract: A surgical stapling device particularly suited for endoscopic procedures is described The device includes a handle assembly and an elongated body extending distally from the handle assembly The distal end of the elongated body is adapted to engage a disposable loading unit A control rod having a proximal end operatively connected to the handle assembly includes a distal end extending through the elongated body A control rod locking member is provided to prevent movement of the control rod until the disposable loading unit is fully secured to the elongated body of the stapling device

2,013 citations

Journal ArticleDOI
TL;DR: Electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin akin to human skin.
Abstract: Human skin is a remarkable organ. It consists of an integrated, stretchable network of sensors that relay information about tactile and thermal stimuli to the brain, allowing us to maneuver within our environment safely and effectively. Interest in large-area networks of electronic devices inspired by human skin is motivated by the promise of creating autonomous intelligent robots and biomimetic prosthetics, among other applications. The development of electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin (e-skin) akin to human skin. E-skins are already capable of providing augmented performance over their organic counterpart, both in superior spatial resolution and thermal sensitivity. They could be further improved through the incorporation of additional functionalities (e.g., chemical and biological sensing) and desired properties (e.g., biodegradability and self-powering). Continued rapid progress in this area is promising for the development of a fully integrated e-skin in the near future.

1,950 citations

Journal ArticleDOI
TL;DR: It is discussed how the described shape-memory polymers show great potential for diverse applications, including in the medical arena, sensors, and actuators, and as dictated by macromolecular details.
Abstract: Shape-memory polymers (SMPs) have attracted significant attention from both industrial and academic researchers due to their useful and fascinating functionality. This review thoroughly examines progress in shape-memory polymers, including the very recent past, achieved by numerous groups around the world and our own research group. Considering all of the shape-memory polymers reviewed, we identify a classification scheme wherein nearly all SMPs may be associated with one of four classes in accordance with their shape fixing and recovering mechanisms and as dictated by macromolecular details. We discuss how the described shape-memory polymers show great potential for diverse applications, including in the medical arena, sensors, and actuators.

1,805 citations

Journal ArticleDOI
19 Aug 2005-Science
TL;DR: Self-supporting nanotube sheets are initially formed as a highly anisotropic electronically conducting aerogel that can be densified into strong sheets that are as thin as 50 nanometers and the measured gravimetric strength of orthogonally oriented sheet arrays exceeds that of sheets of high-strength steel.
Abstract: Individual carbon nanotubes are like minute bits of string, and many trillions of these invisible strings must be assembled to make useful macroscopic articles. We demonstrated such assembly at rates above 7 meters per minute by cooperatively rotating carbon nanotubes in vertically oriented nanotube arrays (forests) and made 5-centimeter-wide, meter-long transparent sheets. These self-supporting nanotube sheets are initially formed as a highly anisotropic electronically conducting aerogel that can be densified into strong sheets that are as thin as 50 nanometers. The measured gravimetric strength of orthogonally oriented sheet arrays exceeds that of sheets of high-strength steel. These nanotube sheets have been used in laboratory demonstrations for the microwave bonding of plastics and for making transparent, highly elastomeric electrodes; planar sources of polarized broad-band radiation; conducting appliques; and flexible organic light-emitting diodes.

1,630 citations