Author
Jose R. Celaya
Other affiliations: Rensselaer Polytechnic Institute, Research Institute for Advanced Computer Science
Bio: Jose R. Celaya is an academic researcher from Ames Research Center. The author has contributed to research in topics: Prognostics & Electrolytic capacitor. The author has an hindex of 27, co-authored 67 publications receiving 2912 citations. Previous affiliations of Jose R. Celaya include Rensselaer Polytechnic Institute & Research Institute for Advanced Computer Science.
Topics: Prognostics, Electrolytic capacitor, Capacitor, Electronics, Avionics
Papers
More filters
12 Dec 2008
TL;DR: The metrics that are already used for prognostics in a variety of domains including medicine, nuclear, automotive, aerospace, and electronics are surveyed and differences and similarities between these domains and health maintenance have been analyzed to help understand what performance evaluation methods may or may not be borrowed.
Abstract: Prognostics is an emerging concept in condition based maintenance (CBM) of critical systems. Along with developing the fundamentals of being able to confidently predict Remaining Useful Life (RUL), the technology calls for fielded applications as it inches towards maturation. This requires a stringent performance evaluation so that the significance of the concept can be fully exploited. Currently, prognostics concepts lack standard definitions and suffer from ambiguous and inconsistent interpretations. This lack of standards is in part due to the varied end-user requirements for different applications, time scales, available information, domain dynamics, etc. to name a few issues. Instead, the research community has used a variety of metrics based largely on convenience with respect to their respective requirements. Very little attention has been focused on establishing a common ground to compare different efforts. This paper surveys the metrics that are already used for prognostics in a variety of domains including medicine, nuclear, automotive, aerospace, and electronics. It also considers other domains that involve prediction-related tasks, such as weather and finance. Differences and similarities between these domains and health maintenance have been analyzed to help understand what performance evaluation methods may or may not be borrowed. Further, these metrics have been categorized in several ways that may be useful in deciding upon a suitable subset for a specific application. Some important prognostic concepts have been defined using a notational framework that enables interpretation of different metrics coherently. Last, but not the least, a list of metrics has been suggested to assess critical aspects of RUL predictions before they are fielded in real applications.
456 citations
TL;DR: In this article, the authors examined prognostics and health management issues using battery health management of Gen 2 cells, an 18650-size lithium-ion cell, as a test case.
Abstract: In this article, we examine prognostics and health management (PHM) issues using battery health management of Gen 2 cells, an 18650-size lithium-ion cell, as a test case. We will show where advanced regression, classification, and state estimation algorithms have an important role in the solution of the problem and in the data collection scheme for battery health management that we used for this case study.
416 citations
22 Mar 2021
TL;DR: This paper presents several new evaluation metrics tailored for prognostics that were recently introduced and were shown to effectively evaluate various algorithms as compared to other conventional metrics.
Abstract: Prognostic performance evaluation has gained significant attention in the past few years. Currently, prognostics concepts lack standard definitions and suffer from ambiguous and inconsistent interpretations. This lack of standards is in part due to the varied end-user requirements for different applications, time scales, available information, domain dynamics, etc. to name a few. The research community has used a variety of metrics largely based on convenience and their respective requirements. Very little attention has been focused on establishing a standardized approach to compare different efforts. This paper presents several new evaluation metrics tailored for prognostics that were recently introduced and were shown to effectively evaluate various algorithms as compared to other conventional metrics. Specifically, this paper presents a detailed discussion on how these metrics should be interpreted and used. These metrics have the capability of incorporating probabilistic uncertainty estimates from prognostic algorithms. In addition to quantitative assessment they also offer a comprehensive visual perspective that can be used in designing the prognostic system. Several methods are suggested to customize these metrics for different applications. Guidelines are provided to help choose one method over another based on distribution characteristics. Various issues faced by prognostics and its performance evaluation are discussed followed by a formal notational framework to help standardize subsequent developments.
364 citations
TL;DR: Precursor parameters have been identified to enable development of a prognostic approach for insulated gate bipolar transistors (IGBT) failure and will involve trending precursor data, and using physics of failure models for prediction of the remaining useful life of these devices.
Abstract: Precursor parameters have been identified to enable development of a prognostic approach for insulated gate bipolar transistors (IGBT). The IGBT were subjected to thermal overstress tests using a transistor test board until device latch-up. The collector-emitter current, transistor case temperature, transient and steady state gate voltages, and transient and steady state collector-emitter voltages were monitored in-situ during the test. Pre- and post-aging characterization tests were performed on the IGBT. The aged parts were observed to have shifts in capacitance-voltage (C-V) measurements as a result of trapped charge in the gate oxide. The collector-emitter ON voltage VCE(ON) showed a reduction with aging. The reduction in the VCE(ON) was found to be correlated to die attach degradation, as observed by scanning acoustic microscopy (SAM) analysis. The collector-emitter voltage, and transistor turn-off time were observed to be precursor parameters to latch-up. The monitoring of these precursor parameters will enable the development of a prognostic methodology for IGBT failure. The prognostic methodology will involve trending precursor data, and using physics of failure models for prediction of the remaining useful life of these devices.
199 citations
27 Sep 2009
TL;DR: This paper presents a detailed discussion on how these metrics should be interpreted and used and several shortcomings identified, while applying these metrics to a variety of real applications, are also summarized along with discussions that attempt to alleviate these problems.
Abstract: Prognostics performance evaluation has gained significant attention in the past few years. As prognostics technology matures and more sophisticated methods for prognostic uncertainty management are developed, a standardized methodology for performance evaluation becomes extremely important to guide improvement efforts in a constructive manner. This paper is in continuation of previous efforts where several new evaluation metrics tailored for prognostics were introduced and were shown to effectively evaluate various algorithms as compared to other conventional metrics. Specifically, this paper presents a detailed discussion on how these metrics should be interpreted and used. Several shortcomings identified, while applying these metrics to a variety of real applications, are also summarized along with discussions that attempt to alleviate these problems. Further, these metrics have been enhanced to include the capability of incorporating probability distribution information from prognostic algorithms as opposed to evaluation based on point estimates only. Several methods have been suggested and guidelines have been provided to help choose one method over another based on probability distribution characteristics. These approaches also offer a convenient and intuitive visualization of algorithm performance with respect to some of these new metrics like prognostic horizon and alpha-lambda performance, and also quantify the corresponding performance while incorporating the uncertainty information.
126 citations
Cited by
More filters
09 Mar 2012
TL;DR: Artificial neural networks (ANNs) constitute a class of flexible nonlinear models designed to mimic biological neural systems as mentioned in this paper, and they have been widely used in computer vision applications.
Abstract: Artificial neural networks (ANNs) constitute a class of flexible nonlinear models designed to mimic biological neural systems. In this entry, we introduce ANN using familiar econometric terminology and provide an overview of ANN modeling approach and its implementation methods. † Correspondence: Chung-Ming Kuan, Institute of Economics, Academia Sinica, 128 Academia Road, Sec. 2, Taipei 115, Taiwan; ckuan@econ.sinica.edu.tw. †† I would like to express my sincere gratitude to the editor, Professor Steven Durlauf, for his patience and constructive comments on early drafts of this entry. I also thank Shih-Hsun Hsu and Yu-Lieh Huang for very helpful suggestions. The remaining errors are all mine.
2,069 citations
01 Jan 2011
TL;DR: In this paper, a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions is presented.
Abstract: This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for calculating the global sensitivity indices in terms of the expansion coefficients, and dimension-reduction integration for estimating the expansion coefficients. Due to identical dimensional structures of PDD and analysis-of-variance decomposition, the proposed method facilitates simple and direct calculation of the global sensitivity indices. Numerical results of the global sensitivity indices computed for smooth systems reveal significantly higher convergence rates of the PDD approximation than those from existing methods, including polynomial chaos expansion, random balance design, state-dependent parameter, improved Sobol’s method, and sampling-based methods. However, for non-smooth functions, the convergence properties of the PDD solution deteriorate to a great extent, warranting further improvements. The computational complexity of the PDD method is polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality to some extent. Mathematical modeling of complex systems often requires sensitivity analysis to determine how an output variable of interest is influenced by individual or subsets of input variables. A traditional local sensitivity analysis entails gradients or derivatives, often invoked in design optimization, describing changes in the model response due to the local variation of input. Depending on the model output, obtaining gradients or derivatives, if they exist, can be simple or difficult. In contrast, a global sensitivity analysis (GSA), increasingly becoming mainstream, characterizes how the global variation of input, due to its uncertainty, impacts the overall uncertain behavior of the model. In other words, GSA constitutes the study of how the output uncertainty from a mathematical model is divvied up, qualitatively or quantitatively, to distinct sources of input variation in the model [1].
1,296 citations
TL;DR: A review on machinery prognostics following its whole program, i.e., from data acquisition to RUL prediction, which provides discussions on current situation, upcoming challenges as well as possible future trends for researchers in this field.
Abstract: Machinery prognostics is one of the major tasks in condition based maintenance (CBM), which aims to predict the remaining useful life (RUL) of machinery based on condition information. A machinery prognostic program generally consists of four technical processes, i.e., data acquisition, health indicator (HI) construction, health stage (HS) division, and RUL prediction. Over recent years, a significant amount of research work has been undertaken in each of the four processes. And much literature has made an excellent overview on the last process, i.e., RUL prediction. However, there has not been a systematic review that covers the four technical processes comprehensively. To fill this gap, this paper provides a review on machinery prognostics following its whole program, i.e., from data acquisition to RUL prediction. First, in data acquisition, several prognostic datasets widely used in academic literature are introduced systematically. Then, commonly used HI construction approaches and metrics are discussed. After that, the HS division process is summarized by introducing its major tasks and existing approaches. Afterwards, the advancements of RUL prediction are reviewed including the popular approaches and metrics. Finally, the paper provides discussions on current situation, upcoming challenges as well as possible future trends for researchers in this field.
1,116 citations
12 Dec 2008
TL;DR: In this article, the authors describe how damage propagation can be modeled within the modules of aircraft gas turbine engines and generate response surfaces of all sensors via a thermo-dynamical simulation model.
Abstract: This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are generated via a thermo-dynamical simulation model for the engine as a function of variations of flow and efficiency of the modules of interest. An exponential rate of change for flow and efficiency loss was imposed for each data set, starting at a randomly chosen initial deterioration set point. The rate of change of the flow and efficiency denotes an otherwise unspecified fault with increasingly worsening effect. The rates of change of the faults were constrained to an upper threshold but were otherwise chosen randomly. Damage propagation was allowed to continue until a failure criterion was reached. A health index was defined as the minimum of several superimposed operational margins at any given time instant and the failure criterion is reached when health index reaches zero. Output of the model was the time series (cycles) of sensed measurements typically available from aircraft gas turbine engines. The data generated were used as challenge data for the prognostics and health management (PHM) data competition at PHMpsila08.
1,036 citations