scispace - formally typeset
Search or ask a question
Author

José Ragot

Bio: José Ragot is an academic researcher from University of Lorraine. The author has contributed to research in topics: Observer (quantum physics) & Nonlinear system. The author has an hindex of 39, co-authored 475 publications receiving 5851 citations. Previous affiliations of José Ragot include Nancy-Université & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a method for state-estimation of Takagi-Sugeno descriptor systems (TSDS) affected by unknown inputs (UI) is presented, where the proposed observers are not in descriptor form but in usual form.
Abstract: This paper presents a method for state-estimation of Takagi-Sugeno descriptor systems (TSDS) affected by unknown inputs (UI). For ease of implementation's sake, the proposed observers are not in descriptor form but in usual form. Sufficient existence conditions of the unknown input observers are given and strict linear matrix inequalities (LMI) are solved to determine the gain of the observers. If the perfect unknown input decoupling is not possible, the UI observer is designed in order to minimise the L2-gain from the UI to the state estimation error. The two previous objectives can be mixed in order to decouple the estimation to a subset of the UI, while attenuating the L2 gain from the other UI to the estimation. The proposed UI observers are used for robust fault diagnosis. Fault diagnosis for TSDS is performed by designing a bank of observers. A simple decision logic and thresholds setting allow to determine the occurring fault. The results are established for both the continuous and the discrete time cases. The proposed method is illustrated by a numerical example.

183 citations

Journal ArticleDOI
TL;DR: In this paper, the design of observers for non-linear systems described by Takagi-Sugeno (T-S) multiple models with unmeasurable premise variables is studied.
Abstract: This study is dedicated to the design of observers for non-linear systems described by Takagi–Sugeno (T–S) multiple models with unmeasurable premise variables. Furthermore, this T–S structure can represent a larger class of non-linear systems compared to the T–S systems with measurable premise variables. Considering the state of the system as a premise variable allows one to exactly represent the non-linear systems described by the general form x=f(x, u). Unfortunately, the developed methods for estimating the state of T–S systems with measured premise variable are not directly applicable for the systems that use the state as a premise variable. In the present paper, firstly, the design of observers for T–S systems with unmeasurable premise variable is proposed and sufficient convergence conditions are established by Lyapunov stability analysis. The linear matrix inequality (LMI) formalism is used in order to express the convergence conditions of the state estimation error in terms of LMI and to obtain the gains of the observer. Secondly, the proposed method is extended in order to attenuate energy-bounded unknown inputs such as disturbances. An academic example is proposed to compare some existing methods and the proposed one.

148 citations

Journal ArticleDOI
TL;DR: In this article, a sensor fault detection and isolation procedure based on principal component analysis (PCA) is proposed to monitor an air quality monitoring network, which is optimal with respect to a reconstruction error criterion.

140 citations

Journal ArticleDOI
TL;DR: In this paper, a fast two-step algorithm is proposed for fault detection and isolation based on robust principal component analysis (PCA) which is applied to remove the effect of outliers on the PCA model.
Abstract: Principal component analysis (PCA) is a powerful fault detection and isolation method. However, the classical PCA, which is based on the estimation of the sample mean and covariance matrix of the data, is very sensitive to outliers in the training data set. Usually robust principal component analysis is applied to remove the effect of outliers on the PCA model. In this paper, a fast two-step algorithm is proposed. First, the objective was to find an accurate estimate of the covariance matrix of the data so that a PCA model might be developed that could then be used for fault detection and isolation. A very simple estimate derived from a one-step weighted variance-covariance estimate is used (Ruiz-Gazen, 1996). This is a "local" matrix of variance which tends to emphasize the contribution of close observations in comparison with distant observations (outliers). Second, structured residuals are used for multiple fault detection and isolation. These structured residuals are based on the reconstruction principle, and the existence condition of such residuals is used to determine the detectable faults and the isolable faults. The proposed scheme avoids the combinatorial explosion of faulty scenarios related to multiple faults to be considered. Then, this procedure for outliers detection and isolation is successfully applied to an example with multiple faults.

102 citations


Cited by
More filters
Book
27 Sep 2011
TL;DR: Robust Model-Based Fault Diagnosis for Dynamic Systems targets both newcomers who want to get into this subject, and experts who are concerned with fundamental issues and are also looking for inspiration for future research.
Abstract: There is an increasing demand for dynamic systems to become safer and more reliable This requirement extends beyond the normally accepted safety-critical systems such as nuclear reactors and aircraft, where safety is of paramount importance, to systems such as autonomous vehicles and process control systems where the system availability is vital It is clear that fault diagnosis is becoming an important subject in modern control theory and practice Robust Model-Based Fault Diagnosis for Dynamic Systems presents the subject of model-based fault diagnosis in a unified framework It contains many important topics and methods; however, total coverage and completeness is not the primary concern The book focuses on fundamental issues such as basic definitions, residual generation methods and the importance of robustness in model-based fault diagnosis approaches In this book, fault diagnosis concepts and methods are illustrated by either simple academic examples or practical applications The first two chapters are of tutorial value and provide a starting point for newcomers to this field The rest of the book presents the state of the art in model-based fault diagnosis by discussing many important robust approaches and their applications This will certainly appeal to experts in this field Robust Model-Based Fault Diagnosis for Dynamic Systems targets both newcomers who want to get into this subject, and experts who are concerned with fundamental issues and are also looking for inspiration for future research The book is useful for both researchers in academia and professional engineers in industry because both theory and applications are discussed Although this is a research monograph, it will be an important text for postgraduate research students world-wide The largest market, however, will be academics, libraries and practicing engineers and scientists throughout the world

3,826 citations

Journal ArticleDOI
TL;DR: A bibliographical review on reconfigurable fault-tolerant control systems (FTCS) is presented, with emphasis on the reconfiguring/restructurable controller design techniques.

2,455 citations

Journal ArticleDOI
TL;DR: The three-part survey paper aims to give a comprehensive review of real-time fault diagnosis and fault-tolerant control, with particular attention on the results reported in the last decade.
Abstract: With the continuous increase in complexity and expense of industrial systems, there is less tolerance for performance degradation, productivity decrease, and safety hazards, which greatly necessitates to detect and identify any kinds of potential abnormalities and faults as early as possible and implement real-time fault-tolerant operation for minimizing performance degradation and avoiding dangerous situations. During the last four decades, fruitful results have been reported about fault diagnosis and fault-tolerant control methods and their applications in a variety of engineering systems. The three-part survey paper aims to give a comprehensive review of real-time fault diagnosis and fault-tolerant control, with particular attention on the results reported in the last decade. In this paper, fault diagnosis approaches and their applications are comprehensively reviewed from model- and signal-based perspectives, respectively.

2,026 citations