scispace - formally typeset
Search or ask a question
Author

José Roberto S.A. Almeida Leite

Bio: José Roberto S.A. Almeida Leite is an academic researcher from University of Porto. The author has contributed to research in topics: Antimicrobial peptides & Minimum inhibitory concentration. The author has an hindex of 2, co-authored 2 publications receiving 35 citations. Previous affiliations of José Roberto S.A. Almeida Leite include Federal University of Piauí & University of Brasília.

Papers
More filters
Journal ArticleDOI
TL;DR: Ocellatin-PT3 may be promising as a template for the development of novel antimicrobial peptides against P. aeruginosa, and was capable of preventing the proliferation of 48-h mature biofilms at concentrations ranging from 4 to 8× the MIC.
Abstract: Aim To test ocellatin peptides (ocellatins-PT2-PT6) for antibacterial and antibiofilm activities and synergy with antibiotics against Pseudomonas aeruginosa. Materials & methods Normal- and checkerboard-broth microdilution methods were used. Biofilm studies included microtiter plate-based assays and microscopic analysis by confocal laser scanning microscopy and atomic force microscopy. Results Ocellatins were more active against multidrug-resistant isolates of P. aeruginosa than against susceptible strains. Ocellatin-PT3 showed synergy with ciprofloxacin and ceftazidime against multidrug-resistant isolates and was capable of preventing the proliferation of 48-h mature biofilms at concentrations ranging from 4 to 8× the MIC. Treated biofilms had low viability and were slightly more disaggregated. Conclusion Ocellatin-PT3 may be promising as a template for the development of novel antimicrobial peptides against P. aeruginosa. [Formula: see text].

39 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An insight is given into the possibilities that physicochemical tools can give in the AMPs research and the state of the art on the current promising combined therapies between AMPs and conventional antibiotics, which appear to be a plausible future opportunity for AMPs treatment.
Abstract: Antimicrobial peptides (AMPs) are promising novel antibiotics since they have shown antimicrobial activity against a wide range of bacterial species, including multiresistant bacteria; however, toxicity is the major barrier to convert antimicrobial peptides into active drugs. A profound and proper understanding of the complex interactions between these peptides and biological membranes using biophysical tools and model membranes seems to be a key factor in the race to develop a suitable antimicrobial peptide therapy for clinical use. In the search for such therapy, different combined approaches with conventional antibiotics have been evaluated in recent years and demonstrated to improve the therapeutic potential of AMPs. Some of these approaches have revealed promising additive or synergistic activity between AMPs and chemical antibiotics. This review will give an insight into the possibilities that physicochemical tools can give in the AMPs research and also address the state of the art on the current promising combined therapies between AMPs and conventional antibiotics, which appear to be a plausible future opportunity for AMPs treatment.

194 citations

Journal ArticleDOI
TL;DR: Examination of a combined action of natural AMPs with different structure and mode of action with varied antibiotic agents found that synergy in antibacterial action mainly occurs between highly membrane-active AMPs and antibiotics with intracellular targets, suggesting bioavailability increase as the main model of such interaction.
Abstract: Rapidly growing resistance of pathogenic bacteria to conventional antibiotics leads to inefficiency of traditional approaches of countering infections and determines the urgent need for a search of fundamentally new anti-infective drugs. Antimicrobial peptides (AMPs) of the innate immune system are promising candidates for a role of such novel antibiotics. However, some cytotoxicity of AMPs toward host cells limits their active implementation in medicine and forces attempts to design numerous structural analogs of the peptides with optimized properties. An alternative route for the successful AMPs introduction may be their usage in combination with conventional antibiotics. Synergistic antibacterial effects have been reported for a number of such combinations, however, the molecular mechanisms of the synergy remain poorly understood and little is known whether AMPs cytotoxicy for the host cells increases upon their application with antibiotics. Our study is directed to examination of a combined action of natural AMPs with different structure and mode of action (porcine protegrin 1, caprine bactenecin ChBac3.4, human alpha- and beta-defensins (HNP-1, HNP-4, hBD-2, hBD-3), human cathelicidin LL-37), and egg white lysozyme with varied antibiotic agents (gentamicin, ofloxacin, oxacillin, rifampicin, polymyxin B, silver nanoparticles) toward selected bacteria, including drug-sensitive and drug-resistant strains, as well as toward some mammalian cells (human erythrocytes, PBMC, neutrophils, murine peritoneal macrophages and Ehrlich ascites carcinoma cells). Using "checkerboard titrations" for fractional inhibitory concentration indexes evaluation, it was found that synergy in antibacterial action mainly occurs between highly membrane-active AMPs (e.g., protegrin 1, hBD-3) and antibiotics with intracellular targets (e.g., gentamicin, rifampcin), suggesting bioavailability increase as the main model of such interaction. In some combinations modulation of dynamics of AMP-bacterial membrane interaction in presence of the antibiotic was also shown. Cytotoxic effects of the same combinations toward normal eukaryotic cells were rarely synergistic. The obtained data approve that combined application of antimicrobial peptides with antibiotics or other antimicrobials is a promising strategy for further development of new approach for combating antibiotic-resistant bacteria by usage of AMP-based therapeutics. Revealing the conventional antibiotics that increase the activity of human endogenous AMPs against particular pathogens is also important for cure strategies elaboration.

152 citations

Journal ArticleDOI
TL;DR: The feasibility of using P5 against a carbapenem-resistant clinical isolate of Pseudomonas aeruginosa, one of the most common and risky pathogens in clinical practice, is analyzed, confirming the promising application of P5 in multi-resistant infections therapeutics.

40 citations

Journal ArticleDOI
TL;DR: This review highlights recent advances in the design of various MDP-based drug delivery systems that can improve the therapeutic effect of MDPs, minimize side effects, and promote the co-delivery of multiple chemotherapeutics, for more efficient antimicrobial and anticancer therapy.

39 citations

Journal ArticleDOI
TL;DR: A novel dual-antibacterial/antibiofilm α-helical peptide with therapeutic potential in vitro and in vivo against clinically relevant bacterial strains is reported.
Abstract: Computer-aided screening of antimicrobial peptides (AMPs) is a promising approach for discovering novel therapies against multidrug-resistant bacterial infections. Here, we functionally and structurally characterized an Escherichia coli-derived AMP (EcDBS1R5) previously designed through pattern identification [α-helical set (KK[ILV](3)[AILV])], followed by sequence optimization. EcDBS1R5 inhibited the growth of Gram-negative and Gram-positive, susceptible and resistant bacterial strains at low doses (2-32 μM), with no cytotoxicity observed against non-cancerous and cancerous cell lines in the concentration range analyzed (<100 μM). Furthermore, EcDBS1R5 (16 μM) acted on Pseudomonas aeruginosa pre-formed biofilms by compromising the viability of biofilm-constituting cells. The in vivo antibacterial potential of EcDBS1R5 was confirmed as the peptide reduced bacterial counts by two-logs 2 days post-infection using a skin scarification mouse model. Structurally, circular dichroism analysis revealed that EcDBS1R5 is unstructured in hydrophilic environments, but has strong helicity in 2,2,2-trifluoroethanol (TFE)/water mixtures (v/v) and sodium dodecyl sulfate (SDS) micelles. The TFE-induced nuclear magnetic resonance structure of EcDBS1R5 was determined and showed an amphipathic helical segment with flexible termini. Moreover, we observed that the amide protons for residues Met2-Ala8, Arg10, Ala13-Ala16, and Trp19 in EcDBS1R5 are protected from the solvent, as their temperature coefficients values are more positive than -4.6 ppb·K-1. In summary, this study reports a novel dual-antibacterial/antibiofilm α-helical peptide with therapeutic potential in vitro and in vivo against clinically relevant bacterial strains.

30 citations