Author
Josef Kittler
Other affiliations: Academy of Sciences of the Czech Republic, University of Cambridge, Ericsson ...read more
Bio: Josef Kittler is an academic researcher from University of Surrey. The author has contributed to research in topics: Facial recognition system & Feature extraction. The author has an hindex of 84, co-authored 862 publications receiving 47970 citations. Previous affiliations of Josef Kittler include Academy of Sciences of the Czech Republic & University of Cambridge.
Papers published on a yearly basis
Papers
More filters
TL;DR: A common theoretical framework for combining classifiers which use distinct pattern representations is developed and it is shown that many existing schemes can be considered as special cases of compound classification where all the pattern representations are used jointly to make a decision.
Abstract: We develop a common theoretical framework for combining classifiers which use distinct pattern representations and show that many existing schemes can be considered as special cases of compound classification where all the pattern representations are used jointly to make a decision. An experimental comparison of various classifier combination schemes demonstrates that the combination rule developed under the most restrictive assumptions-the sum rule-outperforms other classifier combinations schemes. A sensitivity analysis of the various schemes to estimation errors is carried out to show that this finding can be justified theoretically.
5,670 citations
TL;DR: Sequential search methods characterized by a dynamically changing number of features included or eliminated at each step, henceforth "floating" methods, are presented and are shown to give very good results and to be computationally more effective than the branch and bound method.
Abstract: Sequential search methods characterized by a dynamically changing number of features included or eliminated at each step, henceforth "floating" methods, are presented. They are shown to give very good results and to be computationally more effective than the branch and bound method.
3,104 citations
TL;DR: A computationally efficient solution to the problem of minimum error thresholding is derived under the assumption of object and pixel grey level values being normally distributed and is applicable in multithreshold selection.
Abstract: A computationally efficient solution to the problem of minimum error thresholding is derived under the assumption of object and pixel grey level values being normally distributed. The method is applicable in multithreshold selection.
2,145 citations
01 Aug 1988-Graphical Models \/graphical Models and Image Processing \/computer Vision, Graphics, and Image Processing
TL;DR: This survey will provide a useful guide to quickly acquaint researchers with the main literature in this research area and it seems likely that the Hough transform will be an increasingly used technique.
Abstract: We present a comprehensive review of the Hough transform, HT, in image processing and computer vision. It has long been recognized as a technique of almost unique promise for shape and motion analysis in images containing noisy, missing, and extraneous data but its adoption has been slow due to its computational and storage complexity and the lack of a detailed understanding of its properties. However, in recent years much progress has been made in these areas. In this review we discuss ideas for the efficient implementation of the HT and present results on the analytic and empirical performance of various methods. We also report the relationship of Hough methods and other transforms and consider applications in which the HT has been used. It seems likely that the HT will be an increasingly used technique and we hope that this survey will provide a useful guide to quickly acquaint researchers with the main literature in this research area.
2,099 citations
Cited by
More filters
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.
40,257 citations
[...]
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality.
Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …
33,785 citations
Book•
01 Jan 1995TL;DR: This is the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition, and is designed as a text, with over 100 exercises, to benefit anyone involved in the fields of neural computation and pattern recognition.
Abstract: From the Publisher:
This is the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition. After introducing the basic concepts, the book examines techniques for modelling probability density functions and the properties and merits of the multi-layer perceptron and radial basis function network models. Also covered are various forms of error functions, principal algorithms for error function minimalization, learning and generalization in neural networks, and Bayesian techniques and their applications. Designed as a text, with over 100 exercises, this fully up-to-date work will benefit anyone involved in the fields of neural computation and pattern recognition.
19,056 citations
TL;DR: A method based on the negative binomial distribution, with variance and mean linked by local regression, is proposed and an implementation, DESeq, as an R/Bioconductor package is presented.
Abstract: High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. We propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, DESeq, as an R/Bioconductor package.
13,356 citations
[...]
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).
13,246 citations