scispace - formally typeset
Search or ask a question
Author

Josep Nogués

Bio: Josep Nogués is an academic researcher from Spanish National Research Council. The author has contributed to research in topics: Coercivity & Ferromagnetism. The author has an hindex of 58, co-authored 252 publications receiving 15364 citations. Previous affiliations of Josep Nogués include Royal Institute of Technology & Catalan Institution for Research and Advanced Studies.


Papers
More filters
Journal ArticleDOI
TL;DR: The phenomenology of exchange bias and related effects in nanostructures is reviewed in this paper, where the main applications of exchange biased nanostructure are summarized and the implications of the nanometer dimensions on some of the existing exchange bias theories are briefly discussed.

1,721 citations

Journal ArticleDOI
19 Jun 2003-Nature
TL;DR: It is shown that magnetic exchange coupling induced at the interface between ferromagnetic and antiferromagnetic systems can provide an extra source of anisotropy, leading to magnetization stability.
Abstract: Interest in magnetic nanoparticles has increased in the past few years by virtue of their potential for applications in fields such as ultrahigh-density recording and medicine. Most applications rely on the magnetic order of the nanoparticles being stable with time. However, with decreasing particle size the magnetic anisotropy energy per particle responsible for holding the magnetic moment along certain directions becomes comparable to the thermal energy. When this happens, the thermal fluctuations induce random flipping of the magnetic moment with time, and the nanoparticles lose their stable magnetic order and become superparamagnetic. Thus, the demand for further miniaturization comes into conflict with the superparamagnetism caused by the reduction of the anisotropy energy per particle: this constitutes the so-called 'superparamagnetic limit' in recording media. Here we show that magnetic exchange coupling induced at the interface between ferromagnetic and antiferromagnetic systems can provide an extra source of anisotropy, leading to magnetization stability. We demonstrate this principle for ferromagnetic cobalt nanoparticles of about 4 nm in diameter that are embedded in either a paramagnetic or an antiferromagnetic matrix. Whereas the cobalt cores lose their magnetic moment at 10 K in the first system, they remain ferromagnetic up to about 290 K in the second. This behaviour is ascribed to the specific way ferromagnetic nanoparticles couple to an antiferromagnetic matrix.

1,459 citations

Journal ArticleDOI
TL;DR: The fabrication methods and physical properties of ordered magnetic nanostructures with dimensions on the submicron to nanometer scale are reviewed in this article, where various types of nanofabrication techniques are described, and their capabilities and limitations in achieving magnetic nano-structures are discussed.

842 citations

Journal ArticleDOI
TL;DR: It is shown that freeze-dried bacterial cellulose nanofibril aerogels can be used as templates for making lightweight porous magnetic aerogel, which can be compacted into a stiff magnetic nanopaper.
Abstract: Nanostructured biological materials inspire the creation of materials with tunable mechanical properties. Strong cellulose nanofibrils derived from bacteria or wood can form ductile or tough networks that are suitable as functional materials. Here, we show that freeze-dried bacterial cellulose nanofibril aerogels can be used as templates for making lightweight porous magnetic aerogels, which can be compacted into a stiff magnetic nanopaper. The 20-70-nm-thick cellulose nanofibrils act as templates for the non-agglomerated growth of ferromagnetic cobalt ferrite nanoparticles (diameter, 40-120 nm). Unlike solvent-swollen gels and ferrogels, our magnetic aerogel is dry, lightweight, porous (98%), flexible, and can be actuated by a small household magnet. Moreover, it can absorb water and release it upon compression. Owing to their flexibility, high porosity and surface area, these aerogels are expected to be useful in microfluidics devices and as electronic actuators.

753 citations

Journal ArticleDOI
TL;DR: A {ital positive} unidirectional exchange anisotropy in antiferromagnetic and ferromagnetic bilayers cooled through the antiferromeagnetic critical temperature in large magnetic fields is discovered.
Abstract: We have discovered a positive unidirectional exchange anisotropy in antiferromagnetic (Fe${\mathrm{F}}_{2}$) and ferromagnetic (Fe) bilayers cooled through the antiferromagnetic critical temperature ${T}_{N}$ in large magnetic fields. For low positive cooling fields, the ferromagnet's magnetization ( $M\ensuremath{-}H$) loop center shifts to negative fields, as is normally observed in other systems. In contrast, large cooling fields can cause the shift to be positive. This can be explained if the Fe${\mathrm{F}}_{2}$ surface spins couple to the external magnetic cooling field above ${T}_{N}$ and the Fe${\mathrm{F}}_{2}$-Fe interaction is antiferromagnetic.

424 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review focuses on the synthesis, protection, functionalization, and application of magnetic nanoparticles, as well as the magnetic properties of nanostructured systems.
Abstract: This review focuses on the synthesis, protection, functionalization, and application of magnetic nanoparticles, as well as the magnetic properties of nanostructured systems. Substantial progress in the size and shape control of magnetic nanoparticles has been made by developing methods such as co-precipitation, thermal decomposition and/or reduction, micelle synthesis, and hydrothermal synthesis. A major challenge still is protection against corrosion, and therefore suitable protection strategies will be emphasized, for example, surfactant/polymer coating, silica coating and carbon coating of magnetic nanoparticles or embedding them in a matrix/support. Properly protected magnetic nanoparticles can be used as building blocks for the fabrication of various functional systems, and their application in catalysis and biotechnology will be briefly reviewed. Finally, some future trends and perspectives in these research areas will be outlined.

5,956 citations

01 Sep 1955
TL;DR: In this paper, the authors restrict their attention to the ferrites and a few other closely related materials, which are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present.
Abstract: In this chapter, we will restrict our attention to the ferrites and a few other closely related materials. The great interest in ferrites stems from their unique combination of a spontaneous magnetization and a high electrical resistivity. The observed magnetization results from the difference in the magnetizations of two non-equivalent sub-lattices of the magnetic ions in the crystal structure. Materials of this type should strictly be designated as “ferrimagnetic” and in some respects are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present. We shall not adhere to this special nomenclature except to emphasize effects, which are due to the existence of the sub-lattices.

2,659 citations

Journal ArticleDOI
TL;DR: High pressure torsion (HPT) is a well-known technique for metal forming as discussed by the authors, where samples are subjected to a compressive force and concurrent torsional straining.

2,499 citations