scispace - formally typeset
Search or ask a question

Showing papers by "Josep Salud published in 2011"


Journal ArticleDOI
TL;DR: It is concluded that the low-temperature mesophase of CB7CB is a new type of uniaxial nematic phase having a nonuniform director distribution composed of twist-bend deformations, and calculations using an atomistic model and the surface interaction potential with Monte Carlo sampling predict dielectric and elastic properties in the nematics phase.
Abstract: The liquid-crystal dimer 1'',7''-bis(4-cyanobiphenyl-4'-yl)heptane (CB7CB) exhibits two liquid-crystalline mesophases on cooling from the isotropic phase. The high-temperature phase is nematic; the identification and characterization of the other liquid-crystal phase is reported in this paper. It is concluded that the low-temperature mesophase of CB7CB is a new type of uniaxial nematic phase having a nonuniform director distribution composed of twist-bend deformations. The techniques of small-angle x-ray scattering, modulated differential scanning calorimetry, and dielectric spectroscopy have been applied to establish the nature of the nematic-nematic phase transition and the structural features of the twist-bend nematic phase. In addition, magnetic resonance studies (electron-spin resonance and (2)H nuclear magnetic resonance) have been used to investigate the orientational order and director distribution in the liquid-crystalline phases of CB7CB. The synthesis of a specifically deuterated sample of CB7CB is reported, and measurements showed a bifurcation of the quadrupolar splitting on entering the low-temperature mesophase from the high-temperature nematic phase. This splitting could be interpreted in terms of the chirality of the twist-bend structure of the director. Calculations using an atomistic model and the surface interaction potential with Monte Carlo sampling have been carried out to determine the conformational distribution and predict dielectric and elastic properties in the nematic phase. The former are in agreement with experimental measurements, while the latter are consistent with the formation of a twist-bend nematic phase.

511 citations


Journal ArticleDOI
TL;DR: The nematic-to-isotropic phase transition has been exhaustively studied and it has been concluded that the transition is first order in nature and follows the tricritical hypothesis.
Abstract: Broadband dielectric spectroscopy (103 to 1.8 × 109 Hz) and specific heat measurements have been performed on the odd nonsymmetric liquid crystal dimer α-(4-cyanobiphenyl-4′-oxy)-ω-(1-pyreniminebenzylidene-4′-oxy)undecane (CBO11O·Py), as a function of temperature. The mesogenic behavior is restricted to a nematic mesophase which can be supercooled down to its corresponding glassy state if the cooling rate is fast enough (no less than 15 K·min–1). Dielectric measurements enable us to obtain the static permittivity and information about the molecular dynamics in the nematic mesophase as well as in the isotropic phase and across the isotropic-to-nematic phase transition. Two orientations (parallel and perpendicular) of the molecular director with regard to the probe electric field have been investigated. In the nematic mesophase, the dielectric anisotropy is revealed to be positive. Measurements of the parallel component of the dielectric permittivity are well explained by means of the molecular theory of di...

42 citations


Journal ArticleDOI
TL;DR: A fine analysis of the critical behavior of the N–I phase transition would allow to determine or not the presence or not of the biaxial nematic phase and understand how the molecular biaXiality and flexibility of these compounds influences the critical behaviors.
Abstract: In this work, a study of the nematic (N)-isotropic (I) phase transition has been made in a series of odd non-symmetric liquid crystal dimers, the α-(4-cyanobiphenyl-4'- yloxy)-ω-(1-pyrenimine-benzylidene-4'-oxy) alkanes, by means of accurate calorimetric and dielectric measurements. These materials are potential candidates to present the elusive biaxial nematic (N B ) phase, as they exhibit both molecular biaxiality and flexibility. According to the theory, the uniaxial nematic (N U )-isotropic (I) phase transition is first-order in nature, whereas the N B -I phase transition is second-order. Thus, a fine analysis of the critical behavior of the N-I phase transition would allow us to determine the presence or not of the biaxial nematic phase and understand how the molecular biaxiality and flexibility of these compounds influences the critical behavior of the N-I phase transition.

18 citations