scispace - formally typeset
Search or ask a question
Author

Joseph A. DiDonato

Bio: Joseph A. DiDonato is an academic researcher from Cleveland Clinic. The author has contributed to research in topics: Trimethylamine N-oxide & IκB kinase. The author has an hindex of 56, co-authored 110 publications receiving 23451 citations. Previous affiliations of Joseph A. DiDonato include Case Western Reserve University & Cleveland Clinic Lerner Research Institute.


Papers
More filters
Journal ArticleDOI
07 Apr 2011-Nature
TL;DR: Discovery of a relationship between gut-flora-dependent metabolism of dietary phosphatidylcholine and CVD pathogenesis provides opportunities for the development of new diagnostic tests and therapeutic approaches for atherosclerotic heart disease.
Abstract: Metabolomics studies hold promise for the discovery of pathways linked to disease processes. Cardiovascular disease (CVD) represents the leading cause of death and morbidity worldwide. Here we used a metabolomics approach to generate unbiased small-molecule metabolic profiles in plasma that predict risk for CVD. Three metabolites of the dietary lipid phosphatidylcholine—choline, trimethylamine N-oxide (TMAO) and betaine—were identified and then shown to predict risk for CVD in an independent large clinical cohort. Dietary supplementation of mice with choline, TMAO or betaine promoted upregulation of multiple macrophage scavenger receptors linked to atherosclerosis, and supplementation with choline or TMAO promoted atherosclerosis. Studies using germ-free mice confirmed a critical role for dietary choline and gut flora in TMAO production, augmented macrophage cholesterol accumulation and foam cell formation. Suppression of intestinal microflora in atherosclerosis-prone mice inhibited dietary-choline-enhanced atherosclerosis. Genetic variations controlling expression of flavin monooxygenases, an enzymatic source of TMAO, segregated with atherosclerosis in hyperlipidaemic mice. Discovery of a relationship between gut-flora-dependent metabolism of dietary phosphatidylcholine and CVD pathogenesis provides opportunities for the development of new diagnostic tests and therapeutic approaches for atherosclerotic heart disease.

4,107 citations

Journal ArticleDOI
TL;DR: It is demonstrated that metabolism by intestinal microbiota of dietary l-carnitine, a trimethylamine abundant in red meat, also produces TMAO and accelerates atherosclerosis in mice, and intestinal microbiota may contribute to the well-established link between high levels of red meat consumption and CVD risk.
Abstract: Intestinal microbiota metabolism of choline and phosphatidylcholine produces trimethylamine (TMA), which is further metabolized to a proatherogenic species, trimethylamine-N-oxide (TMAO). We demonstrate here that metabolism by intestinal microbiota of dietary L-carnitine, a trimethylamine abundant in red meat, also produces TMAO and accelerates atherosclerosis in mice. Omnivorous human subjects produced more TMAO than did vegans or vegetarians following ingestion of L-carnitine through a microbiota-dependent mechanism. The presence of specific bacterial taxa in human feces was associated with both plasma TMAO concentration and dietary status. Plasma L-carnitine levels in subjects undergoing cardiac evaluation (n = 2,595) predicted increased risks for both prevalent cardiovascular disease (CVD) and incident major adverse cardiac events (myocardial infarction, stroke or death), but only among subjects with concurrently high TMAO levels. Chronic dietary L-carnitine supplementation in mice altered cecal microbial composition, markedly enhanced synthesis of TMA and TMAO, and increased atherosclerosis, but this did not occur if intestinal microbiota was concurrently suppressed. In mice with an intact intestinal microbiota, dietary supplementation with TMAO or either carnitine or choline reduced in vivo reverse cholesterol transport. Intestinal microbiota may thus contribute to the well-established link between high levels of red meat consumption and CVD risk.

3,222 citations

Journal ArticleDOI
13 Oct 1995-Science
TL;DR: It is shown that glucocorticoids are potent inhibitors of nuclear factor kappa B activation in mice and cultured cells, mediated by induction of the IκBα inhibitory protein, which traps activated NF-κB in inactive cytoplasmic complexes.
Abstract: Glucocorticoids are among the most potent anti-inflammatory and immunosuppressive agents. They inhibit synthesis of almost all known cytokines and of several cell surface molecules required for immune function, but the mechanism underlying this activity has been unclear. Here it is shown that glucocorticoids are potent inhibitors of nuclear factor kappa B (NF-κB) activation in mice and cultured cells. This inhibition is mediated by induction of the IκBα inhibitory protein, which traps activated NF-κB in inactive cytoplasmic complexes. Because NF-κB activates many immunoregulatory genes in response to pro-inflammatory stimuli, the inhibition of its activity can be a major component of the anti-inflammatory activity of glucocorticoids.

2,287 citations

Journal ArticleDOI
07 Aug 1997-Nature
TL;DR: IKK turns out to be the long-sought-after protein kinase that mediates the critical regulatory step in NF-κB activation, and phosphorylates IκBs on the sites that trigger their degradation.
Abstract: Nuclear transcription factors of the NF-κB/Rel family are inhibited by IκB proteins, which inactivate NF-κB by trapping it in the cell cytoplasm. Phosphorylation of IκBs marks them out for destruction, thereby relieving their inhibitory effect on NF-κB. A cytokine-activated protein kinase complex, IKK (for IκB kinase), has now been purified that phosphorylates IκBs on the sites that trigger their degradation. A component of IKK was molecularly cloned and identified as a serine kinase. IKK turns out to be the long-sought-after protein kinase that mediates the critical regulatory step in NF-κB activation.

2,115 citations

Journal ArticleDOI
TL;DR: In all malignancies, NF‐κB acts in a cell type‐specific manner: activating survival genes within cancer cells and inflammation‐promoting genes in components of the tumor microenvironment, yet, the complex biological functions of NF-κB have made its therapeutic targeting a challenge.
Abstract: The nuclear factor-κB (NF-κB) transcription factor family has been considered the central mediator of the inflammatory process and a key participant in innate and adaptive immune responses. Coincident with the molecular cloning of NF-κB/RelA and identification of its kinship to the v-Rel oncogene, it was anticipated that NF-κB itself would be involved in cancer development. Oncogenic activating mutations in NF-κB genes are rare and have been identified only in some lymphoid malignancies, while most NF-κB activating mutations in lymphoid malignancies occur in upstream signaling components that feed into NF-κB. NF-κB activation is also prevalent in carcinomas, in which NF-κB activation is mainly driven by inflammatory cytokines within the tumor microenvironment. Importantly, however, in all malignancies, NF-κB acts in a cell type-specific manner: activating survival genes within cancer cells and inflammation-promoting genes in components of the tumor microenvironment. Yet, the complex biological functions of NF-κB have made its therapeutic targeting a challenge.

1,246 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review discusses recent information on functions and mechanisms of the ubiquitin system and focuses on what the authors know, and would like to know, about the mode of action of ubi...
Abstract: The selective degradation of many short-lived proteins in eukaryotic cells is carried out by the ubiquitin system. In this pathway, proteins are targeted for degradation by covalent ligation to ubiquitin, a highly conserved small protein. Ubiquitin-mediated degradation of regulatory proteins plays important roles in the control of numerous processes, including cell-cycle progression, signal transduction, transcriptional regulation, receptor down-regulation, and endocytosis. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Abnormalities in ubiquitin-mediated processes have been shown to cause pathological conditions, including malignant transformation. In this review we discuss recent information on functions and mechanisms of the ubiquitin system. Since the selectivity of protein degradation is determined mainly at the stage of ligation to ubiquitin, special attention is focused on what we know, and would like to know, about the mode of action of ubiquitin-protein ligation systems and about signals in proteins recognized by these systems.

7,888 citations

Journal ArticleDOI
TL;DR: This review considers recent findings regarding GC action and generates criteria for determining whether a particular GC action permits, stimulates, or suppresses an ongoing stress-response or, as an additional category, is preparative for a subsequent stressor.
Abstract: The secretion of glucocorticoids (GCs) is a classic endocrine response to stress. Despite that, it remains controversial as to what purpose GCs serve at such times. One view, stretching back to the time of Hans Selye, posits that GCs help mediate the ongoing or pending stress response, either via basal levels of GCs permitting other facets of the stress response to emerge efficaciously, and/or by stress levels of GCs actively stimulating the stress response. In contrast, a revisionist viewpoint posits that GCs suppress the stress response, preventing it from being pathologically overactivated. In this review, we consider recent findings regarding GC action and, based on them, generate criteria for determining whether a particular GC action permits, stimulates, or suppresses an ongoing stressresponse or, as an additional category, is preparative for a subsequent stressor. We apply these GC actions to the realms of cardiovascular function, fluid volume and hemorrhage, immunity and inflammation, metabolism, neurobiology, and reproductive physiology. We find that GC actions fall into markedly different categories, depending on the physiological endpoint in question, with evidence for mediating effects in some cases, and suppressive or preparative in others. We then attempt to assimilate these heterogeneous GC actions into a physiological whole. (Endocrine Reviews 21: 55‐ 89, 2000)

6,707 citations

Journal ArticleDOI
28 Aug 1998-Science
TL;DR: Apoptosis is a cell suicide mechanism that enables metazoans to control cell number in tissues and to eliminate individual cells that threaten the animal's survival.
Abstract: Apoptosis is a cell suicide mechanism that enables metazoans to control cell number in tissues and to eliminate individual cells that threaten the animal's survival. Certain cells have unique sensors, termed death receptors, on their surface. Death receptors detect the presence of extracellular death signals and, in response, they rapidly ignite the cell's intrinsic apoptosis machinery.

5,968 citations

Journal ArticleDOI
TL;DR: The transcription factor NF-κB has attracted widespread attention among researchers in many fields based on its unusual and rapid regulation, the wide range of genes that it controls, its central role in immunological processes, the complexity of its subunits, and its apparent involvement in several diseases.
Abstract: ▪ Abstract The transcription factor NF-κB has attracted widespread attention among researchers in many fields based on the following: its unusual and rapid regulation, the wide range of genes that it controls, its central role in immunological processes, the complexity of its subunits, and its apparent involvement in several diseases. A primary level of control for NF-κB is through interactions with an inhibitor protein called IκB. Recent evidence confirms the existence of multiple forms of IκB that appear to regulate NF-κB by distinct mechanisms. NF-κB can be activated by exposure of cells to LPS or inflammatory cytokines such as TNF or IL-1, viral infection or expression of certain viral gene products, UV irradiation, B or T cell activation, and by other physiological and nonphysiological stimuli. Activation of NF-κB to move into the nucleus is controlled by the targeted phosphorylation and subsequent degradation of IκB. Exciting new research has elaborated several important and unexpected findings that...

5,833 citations

Journal ArticleDOI
31 May 2001-Nature
TL;DR: It is suggested that the NOD2 gene product confers susceptibility to Crohn's disease by altering the recognition of these components and/or by over-activating NF-kB in monocytes, thus documenting a molecular model for the pathogenic mechanism of Crohn’s disease that can now be further investigated.
Abstract: Crohn's disease and ulcerative colitis, the two main types of chronic inflammatory bowel disease, are multifactorial conditions of unknown aetiology A susceptibility locus for Crohn's disease has been mapped to chromosome 16 Here we have used a positional-cloning strategy, based on linkage analysis followed by linkage disequilibrium mapping, to identify three independent associations for Crohn's disease: a frameshift variant and two missense variants of NOD2, encoding a member of the Apaf-1/Ced-4 superfamily of apoptosis regulators that is expressed in monocytes These NOD2 variants alter the structure of either the leucine-rich repeat domain of the protein or the adjacent region NOD2 activates nuclear factor NF-kB; this activating function is regulated by the carboxy-terminal leucine-rich repeat domain, which has an inhibitory role and also acts as an intracellular receptor for components of microbial pathogens These observations suggest that the NOD2 gene product confers susceptibility to Crohn's disease by altering the recognition of these components and/or by over-activating NF-kB in monocytes, thus documenting a molecular model for the pathogenic mechanism of Crohn's disease that can now be further investigated

5,388 citations